Skip to main content

Advertisement

Log in

Catalytic transfer hydrogenation of cellulose to hydrocarbons using straight-chain aliphatic hydrocarbon as a solvent

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Catalytic transfer hydrogenation is effective for converting cellulose to liquid fuel. This method typically uses an alcohol or a cyclic compound as a liquid hydrogen resource. However, alcohol causes side reactions, and oxygen-containing compounds remain in liquid fuel. Cyclic compounds such as tetralin suppress side reactions, but negatively affect liquid fuel properties because of difficult cyclic compound-liquid fuel separation. Therefore, catalytic transfer hydrogenation of lignocellulose requires a hydrogen donor solvent that is easily separated or does not need to be separated from liquid fuel. Thus, we focused on the use of straight-chain aliphatic hydrocarbon as a solvent. When used with lignocellulose-based liquid fuel, straight-chain aliphatic hydrocarbon can remain in transportation fuel. In addition, a palladium catalyst added to this solvent is expected to behave as a hydrogen donor, because this catalyst dehydrogenates alkane while serving as a hydrogen resource. This expectation was investigated by using cellulose, a main component of lignocellulose, and hexadecane, as a straight-chain aliphatic hydrocarbon. Using this solvent for catalytic transfer hydrogenation resulted in suppressed formation of the solid residue and increased liquefied oil production. Because of this reaction, hexadecane dehydrogenation and the hydrogenation of ɤ-valerolactone and furfural from cellulose were promoted. The hydrocarbon (C10–44) yield in liquefied oil reached over 35 wt% of cellulose, and the liquefied oil was collected while still being mixed with hexadecane. Hexadecane served to extract the hydrocarbon derived from cellulose and acted as a hydrogen resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. van Ruijven B, van Vuuren DP (2009) Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy 37(11):4797–4808. https://doi.org/10.1016/j.enpol.2009.06.037

    Article  Google Scholar 

  2. Mabee WE, Gregg DJ, Saddler JN (2005) Assessing the emerging biorefinery sector in Canada. Appl Biochem Biotechnol 123:765–778. https://doi.org/10.1385/ABAB:123:1-3:0765

    Article  Google Scholar 

  3. Gegg P, Budd L, Ison S (2014) The market development of aviation biofuel: drivers and constraints. J Air Transp Manag 39:34–40. https://doi.org/10.1016/j.jairtraman.2014.03.003

    Article  Google Scholar 

  4. Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev 4:157–175. https://doi.org/10.1016/S1364-0321(99)00011-8

    Article  Google Scholar 

  5. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919. https://doi.org/10.1016/j.energy.2006.10.017

    Article  Google Scholar 

  6. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: Chemistry, Catalysts, and Engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  7. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489. https://doi.org/10.1126/science.1114736

    Article  Google Scholar 

  8. Kannann N, Vakeesan D (2016) Solar energy for future world: - a review. Renew Sustain Energy 62:1092–1105. https://doi.org/10.1016/j.rser.2016.05.022

    Article  Google Scholar 

  9. Gong J, Sumathya K, Qiaob Q, Zhoub Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sust Energ Rev 68:234–246. https://doi.org/10.1016/j.rser.2016.09.097

    Article  Google Scholar 

  10. Jordehi AR (2017) Parameter estimation of solar photovoltaic (PV) cells: a review. Renew Sust Energ Rev 61:354–371. https://doi.org/10.1016/j.rser.2016.03.049

    Article  Google Scholar 

  11. Steinfeld A (2005) Solar thermochemical production of hydrogen–a review. Sol Energy 78:603–615. https://doi.org/10.1016/j.solener.2003.12.012

    Article  Google Scholar 

  12. Zhang F, Zhao P, Meng N, Maddy J (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrog Energy 41(33):14535–14552. https://doi.org/10.1016/j.ijhydene.2016.05.293

    Article  Google Scholar 

  13. Wei H, Liu W, Chen X, Yang Q, Li J, Chen H (2019) Renewable bio-jet fuel production for aviation: a review. Fuel 254:115599. https://doi.org/10.1016/j.fuel.2019.06.007

    Article  Google Scholar 

  14. Wang WC, Tao L (2016) Review of Bio-jet fuel conversion technologies. Renew Sust Energ Rev 53:801–822. https://doi.org/10.1016/j.rser.2015.09.016

    Article  Google Scholar 

  15. Cui X, Zhao X, Liu D (2018) A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks. Green Chem 20:2018–2026. https://doi.org/10.1039/C8GC00292D

    Article  Google Scholar 

  16. Scaldaferri C, Pasa V (2019) Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step. Chem Eng J 370:98–109. https://doi.org/10.1016/j.cej.2019.03.063

    Article  Google Scholar 

  17. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598. https://doi.org/10.1021/ef034067u

    Article  Google Scholar 

  18. Wang G, Li W, Chen H, Li B (2007) The direct liquefaction of sawdust in tetralin. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29:1221–1231. https://doi.org/10.1080/15567030600820070

    Article  Google Scholar 

  19. Barnés MC, Oltvoort J, Kersten SRA, Lange J-P (2017) Wood liquefaction: role of solvent. Ind Eng Chem Res 56(3):635–644. https://doi.org/10.1021/acs.iecr.6b04086

    Article  Google Scholar 

  20. Deng H, Meredith W, Uguna CN, Snape CE (2015) Impact of solvent type and condition on biomass liquefaction to produce heavy oils in high yield with low oxygen contents. J Anal Appl Pyrolysis 113:340–348. https://doi.org/10.1016/j.jaap.2015.02.015

    Article  Google Scholar 

  21. Ruiz JCS, Braden DJ, West RM, Dumesic JA (2010) Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Appl Catal B Environ 100(1-2):184–189. https://doi.org/10.1016/j.apcatb.2010.07.029

    Article  Google Scholar 

  22. Bond JQ, Upadhye AA, Olcay H, Tompsett GA, Jae J, Xing R, Alonso DM, Wang D, Zhang T, Kumar R, Foster A, Sen SM, Maravelias CT, Malina R, Barrett SRH, Lobo R, Wyman CE, Dumesic JA, Huber GW (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci 7:1500–1523. https://doi.org/10.1039/C3EE43846E

    Article  Google Scholar 

  23. Xia Q, Chen Z, Shao Y, Gong X, Wang H, Liu X, Parker SF, Han X, Yang S, Wang Y (2016) Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat Commun 7:11162. https://doi.org/10.1038/ncomms11162

    Article  Google Scholar 

  24. Liu Y, Chen L, Wang T, Zhang Q, Wang C, Yan J, Ma L (2015) One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid. ACS Sustain Chem Eng 3(8):1745–1755. https://doi.org/10.1021/acssuschemeng.5b00256

    Article  Google Scholar 

  25. Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH (2009) Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ Prog Sustain Energy 28(3):441–449. https://doi.org/10.1002/ep.10384

    Article  Google Scholar 

  26. Kouzu M, Saegusa H, Hayashi T, Nishibayashi T (2000) Effect of solvent hydrotreatment on product yield in the coal liquefaction process. Fuel Process Technol 68(3):237–254. https://doi.org/10.1016/S0378-3820(00)00124-7

    Article  Google Scholar 

  27. Gilkey MJ, Xu B (2016) Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading. ACS Catal 6(3):1420–1436. https://doi.org/10.1021/acscatal.5b02171

    Article  Google Scholar 

  28. Wang D, Astruc D (2015) The golden age of transfer hydrogenation. Chem Rev 115(13):6621–6686. https://doi.org/10.1021/acs.chemrev.5b00203

    Article  Google Scholar 

  29. Muzart J (2015) Pd-catalyzed hydrogen-transfer reactions from alcohols to C=C, C=O, and C=N bonds. Eur J Org Chem 26:5693–5707. https://doi.org/10.1002/ejoc.201500401

    Article  Google Scholar 

  30. Wang G, Li W, Li B, Chen H, Bai J (2007) Direct liquefaction of sawdust under syngas with and without catalyst. Chem Eng Process 46(3):187–192. https://doi.org/10.1016/j.cep.2006.05.014

    Article  Google Scholar 

  31. Vasilakos N, Austgen DM (1985) Synthesis of alcohols from carbon oxides and hydrogen. 1. Kinetics of the low-pressure methanol synthesis. Ind Eng Chem Process Des Dev 24(2):304–311. https://doi.org/10.1021/i200028a003

    Article  Google Scholar 

  32. Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts. Fuel 87(3):335–345. https://doi.org/10.1016/j.fuel.2007.05.013

    Article  Google Scholar 

  33. Cheng S, Wei L, Julson J, Kharel PR, Cao Y, Gu Z (2017) Catalytic liquefaction of pine sawdust for biofuel development on bifunctional Zn/HZSM-5 catalyst in supercritical ethanol. J Anal Appl Pyrolysis 126:257–266. https://doi.org/10.1016/j.jaap.2017.06.001

    Article  Google Scholar 

  34. Wang J, Nie R, Xu L, Lyu X, Lu X (2018) Catalytic transfer hydrogenation of oleic acid to octadecanol over magnetic recoverable cobalt catalysts. Green Chem 21(2):314–320. https://doi.org/10.1039/C8GC03075H

    Article  Google Scholar 

  35. Kakuta Y, Takiguchi K, Ishizu M, Ito T (2016) Additive effect of hydrogen donor on wood biomass liquefaction using diesel oil as a solvent. J Jpn Inst Energy 95:897–901. https://doi.org/10.3775/jie.95.897

    Article  Google Scholar 

  36. Tsodikov MV, Chudakova MV, Chistyakov AV, Maksimov YV (2013) Catalytic conversion of cellulose into hydrocarbon fuel components. Pet Chem 53:367–373. https://doi.org/10.1134/S0965544113060145

    Article  Google Scholar 

  37. Jin L, Li W, Liu Q, Ma L, Hu C, Ogunbiyi AT, Wu M, Zhang Q (2020) High performance of Mo-promoted Ir/SiO2 catalysts combined with HZSM-5 toward the conversion of cellulose to C5/C6 alkanes. Bioresour Technol 297:122492. https://doi.org/10.1016/j.biortech.2019.122492

    Article  Google Scholar 

  38. Liu S, Okuyama Y, Tamura M, Nakagawa Y, Imai A, Tomishige K (2014) Production of renewable hexanols from mechanocatalytically depolymerized cellulose by using Ir-ReOx/SiO2 catalyst. ChemSusChem 8(4):628–635. https://doi.org/10.1002/cssc.201403010

    Article  Google Scholar 

  39. de Beeck BO, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels BF (2015) Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ Sci 8(1):230–240. https://doi.org/10.1039/C4EE01523A

    Article  Google Scholar 

  40. Deneyer A, Peeters E, Renders T, Van den Bosch S, Van Oeckel N, Ennaert T, Szarvas T, Korányi TI, Dusselier M, Sels BF (2018) Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nat Energy 3:969–977. https://doi.org/10.1038/s41560-018-0245-6

    Article  Google Scholar 

  41. Vasilakos N, Austgen DM (1985) Hydrogen-donor solvents in biomass liquefaction. Ind Eng Chem Process Des Dev 24(2):304–311. https://doi.org/10.1021/i200029a015

    Article  Google Scholar 

  42. Grilc M, Likozar B, Levec J (2015) Simultaneous liquefaction and hydrodeoxygenation of lignocellulosic biomass over NiMo/Al2O3, Pd/Al2O3, and zeolite Y catalysts in jydrogen donor solvents. Chem Cat Chem 8:180–191. https://doi.org/10.1002/cctc.201500840

    Google Scholar 

  43. Shafaghat H, Rezaei PS, Daud WMAW (2016) Using decalin and tetralin as hydrogen source for transfer hydrogenation of renewable lignin-derived phenolics over activated carbon supported Pd and Pt catalysts. J Taiwan Inst Chem Eng 65:91–100. https://doi.org/10.1016/j.jtice.2016.05.032

    Article  Google Scholar 

  44. Pajak J, Brower KR (1987) On the mechanism of hydrogen transfer from Decalin to coal. Pressure effect and kinetic isotope effect. Energy Fuel 1(4):363–366. https://doi.org/10.1021/ef00004a010

    Article  Google Scholar 

  45. Nawaz Z (2015) Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev Chem Eng 31(5):413–436. https://doi.org/10.1515/revce-2015-0012

    Article  Google Scholar 

  46. Scanlon JT, Willis DE (1985) Calculation of flame ionization detector relative response factors using the effective carbon number concept. J Chromatogr Sci 23(8):333–340. https://doi.org/10.1093/chromsci/23.8.333

    Article  Google Scholar 

  47. Zheng J, Shuyuan Z, Gu S, Xu B (2016) Size-dependent hydrogen oxidation and evolution activities on supported palladium nanoparticles in acid and base. J Electrochem Soc 163(6):F499–F506. https://doi.org/10.1149/2.0661606jes

    Article  Google Scholar 

  48. Zheng Q, Morimoto M, Takanohashi T (2017) Production of carbonaceous microspheres from wood sawdust by a novel hydrothermal carbonization and extraction method. RSC Adv 7:42123–42128. https://doi.org/10.1039/C7RA07847A

    Article  Google Scholar 

  49. Xu Z, Guo Z, Xiao X, Zeng P, Xue Q (2019) Effect of inorganic potassium compounds on the hydrothermal carbonization of Cd-contaminated rice straw for experimental-scale hydrochar. Biomass Bioenergy 130:105357. https://doi.org/10.1016/j.biombioe.2019.105357

    Article  Google Scholar 

  50. Agarwal V, Huber GW, Conner WC Jr, Auerbach SM (2011) Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J Chem Phys 135:134506. https://doi.org/10.1063/1.3646306

    Article  Google Scholar 

  51. Maréchala Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523(1-3):183–196. https://doi.org/10.1016/S0022-2860(99)00389-0

    Article  Google Scholar 

  52. Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I Hydrogen bonds in native celluloses. J Polymer Sci 298:385–395. https://doi.org/10.1002/pol.1959.1203713209

    Article  Google Scholar 

  53. Xin S, Yang H, Chen Y, Yang M, Chen L, Wang X, Chen H (2015) Chemical structure evolution of char during the pyrolysis of cellulose. J Anal Appl Pyrolysis 116:263–271. https://doi.org/10.1016/j.jaap.2015.09.002

    Article  Google Scholar 

  54. Pastorova I, Botto RE, Arisz PW, Boon JJ (1994) Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr Res 262(1):27–47. https://doi.org/10.1016/0008-6215(94)84003-2

    Article  Google Scholar 

  55. Mochizuki T, Chen S-Y, Toba M, Yoshimura Y (2014) Deoxygenation of guaiacol and woody tar over reduced catalysts. Appl Catal B Environ 146:237–243. https://doi.org/10.1016/j.apcatb.2013.05.040

    Article  Google Scholar 

  56. Zhao C, Camaioni DM, Lercher JA (2012) Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. J Catal 288:92–103. https://doi.org/10.1016/j.jcat.2012.01.005

    Article  Google Scholar 

  57. Grilc M, Likozar B, Levec J (2014) Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts. Appl Catal B Environ 150-151:275–287. https://doi.org/10.1016/j.apcatb.2013.12.030

    Article  Google Scholar 

  58. Zhou J, An W, Wang Z, Jia X (2019) Hydrodeoxygenation of phenol over Ni-based bimetallic single-atom surface alloys: mechanism, kinetics and descriptor. Catal Sci Technol 9:4314–4326. https://doi.org/10.1039/C9CY01082C

    Article  Google Scholar 

  59. Leng E, Costa M, Peng Y, Zhang Y, Gong X, Zheng A, Huang Y, Xu M (2018) Role of different chain end types in pyrolysis of glucose-based anhydro-sugars and oligosaccharides. Fuel 234(15):738–745. https://doi.org/10.1016/j.fuel.2018.07.075

    Article  Google Scholar 

  60. Bai X, Johnston P, Sadula S, R. C. (2013) Brown Role of levoglucosan physiochemistry in cellulose pyrolysis. J Anal Appl Pyrolysis 99:58–65. https://doi.org/10.1016/j.jaap.2012.10.028

    Article  Google Scholar 

  61. Asghari FS, Yoshida H (2006) Acid-catalyzed production of 5-hydroxymethyl furfural from d-fructose in subcritical water. Ind Eng Chem Res 45:2163–2173. https://doi.org/10.1021/ie051088y

    Article  Google Scholar 

  62. Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA (2012) The effect of solvent addition on fructose dehydration to 5-hydroxymethylfurfural in biphasic system over zeolites. J Catal 287:68–75. https://doi.org/10.1016/j.jcat.2011.12.002

    Article  Google Scholar 

  63. Weingarten R, Tompsett GA, Conner WC Jr, Huber GW (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal 1:174–182. https://doi.org/10.1016/j.jcat.2011.01.013

    Article  Google Scholar 

  64. Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B Environ 15:107–114. https://doi.org/10.1016/S0926-3373(97)00040-4

    Article  Google Scholar 

  65. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938. https://doi.org/10.1126/science.1085721

    Article  Google Scholar 

  66. Aranifard S, Ammal SC, Heyden A (2014) On the importance of metal–oxide interface sites for the water-gas shift reaction over Pt/CeO2 catalysts. J Catal 309:314–324. https://doi.org/10.1016/j.jcat.2013.10.012

    Article  Google Scholar 

  67. Kimura K, Niisaka S, Kakuta Y, Kurihara K (2020) Effect of hydrogen donation of palladium on active carbon on woody biomass pyrolysis using diesel oil as a solvent. J Jpn Inst Energy 99:8–15. https://doi.org/10.3775/jie.99.8

    Article  Google Scholar 

  68. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99. https://doi.org/10.1039/C0EE00436G

    Article  Google Scholar 

  69. Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143. https://doi.org/10.1016/j.cattod.2012.04.048

    Article  Google Scholar 

  70. Iqbal S, Liu X, Aldosari OF, Miedziak PJ, Edwards JK, Brett GL, Akram A, King GM, Davies TE, Morgan DJ, Knight DK, Hutchings GJ (2014) Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal Sci Technol 4:2280–2286. https://doi.org/10.1039/C4CY00184B

    Article  Google Scholar 

  71. Aldosari OF, Iqbal S, Miedziak PJ, Brett GL, Jones DR, Liu X, Edwards JK, Morgan DJ, Knight DK, Hutchings GJ (2016) Pd-Ru/TiO2 catalyst - an active and selective catalyst for furfural hydrogenation. Catal Sci Technol 6:234–242. https://doi.org/10.1039/C5CY01650A

    Article  Google Scholar 

  72. Al-Shaal MG, Dzierbinski A, Palkovits R (2014) Solvent-free γ-valerolactone hydrogenation to 2-methyltetrahydrofuran catalysed by Ru/C: a reaction network analysis. Green Chem 3:1358–1364. https://doi.org/10.1039/C3GC41803K

    Article  Google Scholar 

  73. Deshpande RM, Buwa VV, Rode CV, Chaudhari RV, Mills PL (2002) Tailoring of activity and selectivity using bimetallic catalyst in hydrogenation of succinic acid. Catal Commun 3:269–274. https://doi.org/10.1016/S1566-7367(02)00119-X

    Article  Google Scholar 

  74. Dohade M, Dhepe PL (2018) Efficient method for cyclopentanone synthesis from furfural: understanding the role of solvents and solubility in a bimetallic catalytic system. Catal Sci Technol 8:5259–5269. https://doi.org/10.1039/C8CY01468J

    Article  Google Scholar 

  75. Bui TV, Sooknoi T, Resasco DE (2017) Simultaneous upgrading of furanics and phenolics via hydroxyalkylation/aldol condensation reactions. ChemSusChem 10(7):1631–1639. https://doi.org/10.1002/cssc.201601251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kentaro Kimura, Yusuke Kakuta, and Kiyohumi Kurihara contributed to the conception or design of the work. Kentaro Kimura and Yuya Saika helped performing the catalytic reactions and analysis, and interpretation of data for the work. All the authors discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to Kentaro Kimura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimura, K., Saika, Y., Kakuta, Y. et al. Catalytic transfer hydrogenation of cellulose to hydrocarbons using straight-chain aliphatic hydrocarbon as a solvent. Biomass Conv. Bioref. 11, 873–884 (2021). https://doi.org/10.1007/s13399-020-01206-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01206-x

Keywords

Navigation