Skip to main content
Log in

Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The bioprospecting of sugarcane bagasse (SCB) through alkali, acid, and hydrodynamic cavitation pretreatment methods and their combinations were evaluated based on bagasse composition, enzymatic hydrolysis, and lactic acid productivity using Bacillus coagulans NCIM 5648. From 100.0 g of SCB, L-lactic acid production of 26.16 g, 8.78 g, 14.15 g, 14.33 g, and 24.61 g in alkali, acid, sequential acid-alkali, sequential alkali-acid, and cavitation with alkali pretreatment was obtained, respectively. Considering the holistic approach from SCB to L-lactic acid, alkali pretreatment is found to be the best method with L-lactic acid titer of 68.7 g/L, the productivity of 2.86 g/L/h, and yield of 0.92 g/g which has resulted in 82.5% higher product yield from SCB as compared to alkali-acid pretreatment. Cavitation in presence of alkali evolved as the next better route with L-lactic acid titer of 62.5 g/L, the productivity of 2.60 g/L/h, and yield of 0.92 g/g. Though the highest glucose release of 89.3 g/L was achieved during enzymatic hydrolysis with sequential alkali-acid-pretreated SCB that resulted in the highest L-lactic acid titer of 71.8 g/L, the productivity of 2.99 g/L/h and fermentation yield of 0.90 g/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alsaheb RAA, Aladdin A, Othman NZ, Malek RA, Leng OM, Aziz R, Enshasy HAE (2015) Lactic acid applications in pharmaceutical and cosmeceutical industries. J Chem Pharm Res 7:729–735 https://www.academia.edu/19574545/Lactic_acid_applications_in_Pharmaceutical_and_Cosmeceutical_Industries_A_critical_review

    Google Scholar 

  2. Rodrigues C, Vandenberghe LPS, Woiciechowski AL, Oliveira JD, Letti LAJ, Soccol CR (2017) Production and application of lactic acid. In: Pandey A, Negi S, Soccol CR (Ed), Current developments in biotechnology and bioengineering, Elsevier, pp. 543–556. https://doi.org/10.1016/B978-0-444-63662-1.00024-5

  3. de Oliveira RA, Komesu A, Rossell C, Filho RM (2018) Challenges and opportunities in lactic acid bioprocess design-from economic to production aspects. Biochem Eng J 133:219–239. https://doi.org/10.1016/j.bej.2018.03.003

    Article  Google Scholar 

  4. Oonkhanond B, Jonglertjunya W, Srimarut N, Bunpachart P, Tantinukul S, Nasongkla N, Sakdaronnarong C (2017) Lactic acid production from sugarcane bagasse by an integrated system of lignocellulose fractionation, saccharification, fermentation, and ex-situ nanofiltration. J Environ Chem Eng 5:2533–2541. https://doi.org/10.1016/j.jece.2017.05.004

    Article  Google Scholar 

  5. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301. https://doi.org/10.1016/j.jbiotec.2011.06.017

    Article  Google Scholar 

  6. Liu Y, Nie Y, Lu X, Zhang X, He H, Pan F, Zhou L, Liu X, Ji X, Zhang S (2019) Cascade utilization of lignocellulosic biomass to high-value products. Green Chem 21:3499–3535 https://pubs.rsc.org/en/content/articlelanding/2019/gc/c9gc00473d#!divAbstract

    Article  Google Scholar 

  7. Quereshi S, Naiya TK, Mandal A, Dutta S (2020) Residual sugarcane bagasse conversion in India: current status, technologies, and policies. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-020-00871-2

  8. Meghana M, Shastri Y (2020) Sustainable valorization of sugar industry waste: status, opportunities, and challenges. Bioresour Technol 303:122929. https://doi.org/10.1016/j.biortech.2020.122929

    Article  Google Scholar 

  9. Mukasekuru MR, Hu J, Zhao X, Sun FF, Pascal K, Ren H, Zhang J (2018) Enhanced high-solids fed-batch enzymatic hydrolysis of sugarcane bagasse with accessory enzymes and additives at low cellulase loading. ACS Sustain Chem Eng 6:12787–12796. https://doi.org/10.1021/acssuschemeng.8b01972

    Article  Google Scholar 

  10. Kim DH, Park HM, Jung YH, Sukyai P, Kim KH (2019) Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresour Technol 284:391–397. https://doi.org/10.1016/j.biortech.2019.03.134

    Article  Google Scholar 

  11. Mukasekuru MR, Kaneza P, Sun H, Sun FF, He J, Zheng P (2020) Fed-batch high-solids enzymatic saccharification of lignocellulosic substrates with a combination of additives and accessory enzymes. Ind Crop Prod 146:112156. https://doi.org/10.1016/j.indcrop.2020.112156

    Article  Google Scholar 

  12. Jonsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory byproducts and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  13. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7 https://bioresourcesbioprocessing.springeropen.com/track/pdf/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  14. Brienzo M, FikizoloS BY, Tyhoda L, Gorgens J (2017) Influence of pretreatment severity on structural changes, lignin content and enzymatic hydrolysis of sugarcane bagasse samples. Renew Energy 104:271–280. https://doi.org/10.1016/j.renene.2016.12.037

    Article  Google Scholar 

  15. Kumar V, Yadav SK, Kumar J, Ahluwalia V (2019) A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. Bioresour Technol 299:122633. https://doi.org/10.1016/j.biortech.2019.122633

    Article  Google Scholar 

  16. Xu H, Li B, Mu X (2016) Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Ind Eng Chem Res 55:8691–8705 https://pubs.acs.org/doi/10.1021/acs.iecr.6b01907

    Article  Google Scholar 

  17. Guragain YN, Wang D, Vadlani PV (2016) Appropriate biorefining strategies for multiple feedstocks: critical evaluation for pretreatment methods, and hydrolysis with high solids loading. Renew Energy 96:832–842. https://doi.org/10.1016/j.renene.2016.04.099

    Article  Google Scholar 

  18. Hilares RT, Kamoei DV, Ahmed MA, da Silva SS, Han JI, dos Santos JC (2018) A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors. Ultrason Sonochem 43:219–226. https://doi.org/10.1016/j.ultsonch.2018.01.016

    Article  Google Scholar 

  19. Hilares RT, Dionizio RM, Prado CA, Ahmed MA, da Silva SS, Santos JC (2019) Pretreatment of sugarcane bagasse using hydrodynamic cavitation technology: Semicontinuous and continuous process. Bioresour Technol 290:121777. https://doi.org/10.1016/j.biortech.2019.121777

    Article  Google Scholar 

  20. Niglio S, Procentese A, Russo ME, Sannia G, Marzocchella A (2017) Ultrasound-assisted dilute acid pretreatment of coffee silver skin for biorefinery applications. Chem Eng Trans 57:109–114 https://www.aidic.it/cet/17/57/019.pdf

    Google Scholar 

  21. Philippini RR, Martiniano SE, Chandel AK, de Carvalho W, da Silva SS (2017) Pretreatment of sugarcane bagasse from cane hybrids: effects on chemical composition and 2G sugars recovery. Waste Biomass Valoriz 10:1561–1570 https://link.springer.com/article/10.1007/s12649-017-0162-0

    Article  Google Scholar 

  22. Hemansi GR, Aswal VK, Saini JK (2020) Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: insight from small angle neutron scattering (SANS). Renew Energy 147:2091–2101. https://doi.org/10.1016/j.renene.2019.10.003

    Article  Google Scholar 

  23. Romani A, Tomaz PD, Garrote G, Teixeira JA, Domingues L (2016) Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresour Technol 220:323–332. https://doi.org/10.1016/j.biortech.2016.08.077

    Article  Google Scholar 

  24. Dong C, Chen J, Guan R, Li X, Xin Y (2018) Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production. Renew Energy 127:444–451. https://doi.org/10.1016/j.renene.2018.03.088

    Article  Google Scholar 

  25. Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L (2010) Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour Technol 101:1036–1043. https://doi.org/10.1016/j.biortech.2009.08.091

    Article  Google Scholar 

  26. Peng L, Xie N, Guo L, Wang L, Yu B, Ma Y (2014) Efficient open fermentative production of polymer-grade L-lactate from sugarcane bagasse hydrolysate by thermotolerant Bacillus sp. strain P38. PLoS One 9:e107143 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156441/

    Article  Google Scholar 

  27. Wischral D, Arias JM, Modesto LF, de Franca Passos D, Pereira N Jr (2019) Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: integrating xylose and glucose fermentation. Biotechnol Prog 35:e2718 https://aiche.onlinelibrary.wiley.com/doi/10.1002/btpr.2718

    Article  Google Scholar 

  28. Liu Y, Xu JX, Zhang Y, He M, Liang C, Yuan Z, Xie J (2016) Improved ethanol production based on high solids fed-batch simultaneous saccharification and fermentation with alkali pretreated sugarcane bagasse. Bioresources 11:2548–2556 https://bioresources.cnr.ncsu.edu/BioRes_11/BioRes_11_1_2548_Liu_XZHLYX_Improved_Ethanol_High%20Solids_SSF_Alkali_pretreated_Bagasse_8656.pdf

    Google Scholar 

  29. Candido RG, Godoy GG, Gonçalves AR (2012) Study of sugarcane bagasse pretreatment with sulfuric acid as a step of cellulose obtaining. World Acad Sci Eng Technol 6:6–10 https://www.semanticscholar.org/paper/Study-of-Sugarcane-Bagasse-Pretreatment-with-Acid-a-R.G.-Godoy/4452f5953001d471e02e875fe458d7e7779fa1dc#citing-papers

    Google Scholar 

  30. Nagarajan S, Ranade VV (2019) Pretreatment of lignocellulosic biomass using vortex-based devices for cavitation: influence on biomethane potential. Ind Eng Chem Res 58:15975–15988 https://pubs.acs.org/doi/10.1021/acs.iecr.9b00859

    Article  Google Scholar 

  31. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure 1617:1–16. https://www.nrel.gov/docs/gen/fy13/42618.pdf

  32. Xu P, Wang L, Zhao B, Ma C, Su F, Tao F, Tang H (2013) Bacillus coagulans strains and their applications in L-lactic acid production. U.S. Patent 8, 492,127. Date of patent 23rd July. https://patents.google.com/patent/US8492127B2/en

  33. Nalawade K, Baral P, Patil S, Pundir A, Kurmi AK, Konde K, Patil S, Agrawal D (2020) Evaluation of alternative strategies for generating fermentable sugars from high-solids alkali pretreated sugarcane bagasse and successive valorization to L (+) lactic acid. Renew Energy 157:708–717. https://doi.org/10.1016/j.renene.2020.05.089

    Article  Google Scholar 

  34. Nakanishi SC, Nascimento VM, Rabelo SC, Sampaio ILM, Junqueira TL, Rocha GJM (2018) Comparative material balances and preliminary technical analysis of the pilot scale sugarcane bagasse alkaline pretreatment to 2G ethanol production. Ind Crop Prod 120:187–197. https://doi.org/10.1016/j.indcrop.2018.04.064

    Article  Google Scholar 

  35. Xu C, Zhang J, Zhang Y, Guo Y, Xu H, Liang C, Wang Z, Xu J (2019) Lignin prepared from different alkaline pretreated sugarcane bagasse and its effect on enzymatic hydrolysis. Int J Biol Macromol 141:484–492. https://doi.org/10.1016/j.ijbiomac.2019.08.263

    Article  Google Scholar 

  36. Jiang LQ, Fang Z, Li XK, Luo J, Fan SP (2013) Combination of dilute acid and ionic liquid pretreatments of sugarcane bagasse for glucose by enzymatic hydrolysis. Process Biochem 48:1942–1946. https://doi.org/10.1016/j.procbio.2013.09.012

    Article  Google Scholar 

  37. Bernier-Oviedo DJ, Rincon-Moreno JA, Solanilla-Duqué JF, Munoz-Hernandez JA, Váquiro-Herrera HA (2018) Comparison of two pretreatments methods to produce second generation bioethanol resulting from sugarcane bagasse. Ind Crop Prod 122:414–421. https://doi.org/10.1016/j.indcrop.2018.06.012

    Article  Google Scholar 

  38. Patel H, Chapla D, Shah A (2017) Bioconversion of pretreated sugarcane bagasse using enzymatic and acid followed by enzymatic hydrolysis approaches for bioethanol production. Renew Energy 109:323–331. https://doi.org/10.1016/j.renene.2017.03.057

    Article  Google Scholar 

  39. Hilares RT, Dionizio RM, Muñoz SS, Prado CA, de Sousa JR, da Silva SS, Santos JC (2020) Hydrodynamic cavitation-assisted continuous pretreatment of sugarcane bagasse for ethanol production: effects of geometric parameters of the cavitation device. Ultrason Sonochem 63:104931. https://doi.org/10.1016/j.ultsonch.2019.104931

    Article  Google Scholar 

  40. Ascencio JJ, Chandel AK, Philippini RR, da Silva SS (2019) Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment. Biomass Convers Biorefin 1–10. https://link.springer.com/article/10.1007/s13399-019-00547-6

  41. Liu Y, Zhang B, Wang W, He M, Xu J, Yuan Z (2017) Evaluation of the solvent water effect on high solids saccharification of alkali-pretreated sugarcane bagasse. Bioresour Technol 235:12–17. https://doi.org/10.1016/j.biortech.2017.03.088

    Article  Google Scholar 

  42. de Godoy CM, Machado DL, da Costa AC (2019) Batch and fed-batch enzymatic hydrolysis of pretreated sugarcane bagasse-assays and modeling. Fuel 253:392–399. https://doi.org/10.1016/j.fuel.2019.05.038

    Article  Google Scholar 

  43. Batalha LAR, Han Q, Jameel H, Chang H, Colodette JL, Borges Gomes FJ (2015) Production of fermentable sugars from sugarcane bagasse by enzymatic hydrolysis after autohydrolysis and mechanical refining. Bioresour Technol 180:97–105. https://doi.org/10.1016/j.biortech.2014.12.060

    Article  Google Scholar 

  44. Chang M, Li D, Wang W, Chen D, Zhang Y, Hu H, Ye X (2017) Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse. Bioresour Technol 244:1055–1058. https://doi.org/10.1016/j.biortech.2017.08.101

    Article  Google Scholar 

  45. Li X, Li M, Pu Y, Ragauskas AJ, Klett AS, Thies M, Zheng Y (2018) Inhibitory effects of lignin on enzymatic hydrolysis: the role of lignin chemistry and molecular weight. Renew Energy 123:664–674. https://doi.org/10.1016/j.renene.2018.02.079

    Article  Google Scholar 

  46. Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9:58–62 https://pubs.rsc.org/en/content/articlelanding/2007/gc/b605839f#!divCitation

    Article  Google Scholar 

  47. Unrean P (2018) Optimized feeding schemes of simultaneous saccharification and fermentation process for high lactic acid titer from sugarcane bagasse. Ind Crop Prod 111:660–666. https://doi.org/10.1016/j.indcrop.2017.11.043

    Article  Google Scholar 

  48. Gonzalez-Leos A, Bustos-Vazquez MG, Rodriguez-Castillejos GC, Rodriguez-Duran LV, Del Angel-Del Angel A (2020) Kinetics of lactic acid fermentation from sugarcane bagasse by Lactobacillus pentosus. Rev Mex Ing Quim 19:377–386. https://doi.org/10.24275/rmiq/Alim618

    Article  Google Scholar 

  49. Patel MA, Ou MS, Ingram LO, Shanmugam KT (2005) Simultaneous saccharification and co-fermentation of crystalline cellulose and sugarcane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnol Prog 21:1453–1460. https://doi.org/10.1021/bp0400339

    Article  Google Scholar 

  50. Van der Pol EC, Eggink G, Weusthuis RA (2016) Production of l (+) lactic acid from acid pretreated sugarcane bagasse using Bacillus coagulans DSM2314 in a simultaneous saccharification and fermentation strategy. Biotechnol Biofuels 9:248 https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-016-0646-3

    Article  Google Scholar 

  51. De Oliveira RA, Schneider R, Rossell CEV, MacielFilho R, Venus J (2019) Polymer grade L-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour Technol Rep 6:26–31. https://doi.org/10.1016/j.biteb.2019.02.003

    Article  Google Scholar 

  52. Jiang T, Qiao H, Zheng Z, Chu Q, Li X, Yong Q, Ouyang J (2016) Lactic acid production from pretreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PLoS One 11:e0149101. https://doi.org/10.1371/journal.pone.0149101

    Article  Google Scholar 

  53. Baral P, Jain L, Kurmi AK, Kumar V, Agrawal D (2019) Augmented hydrolysis of acid pretreated sugarcane bagasse by PEG 6000 addition: a case study of Cellic CTec2 with recycling and reuse. Bioprocess Biosyst Eng 43:473–482. https://doi.org/10.1007/s00449-019-02241-3

    Article  Google Scholar 

  54. López-Gómez JP, Alexandri M, Schneider R, Venus J (2019) A review on the current developments in continuous lactic acid fermentations and case studies utilising inexpensive raw materials. Process Biochem 79:1–10. https://doi.org/10.1016/j.procbio.2018.12.012

    Article  Google Scholar 

  55. Krull S, Brock S, Prüße U, Kuenz A (2020) Hydrolyzed agricultural residues—low-cost nutrient sources for l-lactic acid production. Fermentation. 6:97. https://doi.org/10.3390/fermentation6040097

    Article  Google Scholar 

  56. De Oliveira RA, Alexandri M, Komesu A, Venus J, Rossell CEV, Maciel Filho R (2019) Current advances in separationand purification of second-generation lactic acid. Sep Purif Rev 49:159–175. https://doi.org/10.1080/15422119.2019.1590412

    Article  Google Scholar 

  57. Prabhu AA, Bosakornranut E, Amraoui Y, Agarwal D, Coulon F, Vivekanand V, Thakur VK, Kumar V (2020) Assessing the potential of newly isolated Pichia fermentans for xylitol production using non-detoxified xylose rich pre-hydrolysate derived from sugarcane bagasse. https://doi.org/10.21203/rs.3.rs-45506/v1

  58. Prabhu AA, Ledesma-Amaro R, Lin CSK, Coulon F, Thakur VK, Kumar V (2020b) Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol Biofuels 13:113. https://doi.org/10.1186/s13068-020-01747-3

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Shivajirao Deshmukh, Director General, VSI for providing the necessary facilities to complete this work and his constant motivation.

Funding

This research was financially supported by the Department of Biotechnology (DBT), Govt of India to VSI, Pune under the Indo-UK Industrial Waste Challenge 2017 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalawade, K., Saikia, P., Behera, S. et al. Assessment of multiple pretreatment strategies for 2G L-lactic acid production from sugarcane bagasse. Biomass Conv. Bioref. 13, 647–660 (2023). https://doi.org/10.1007/s13399-020-01163-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01163-5

Keywords

Navigation