Skip to main content
Log in

Influence of chlorite treatment on the fine structure of alkali pretreated sugarcane bagasse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Bagasse, an industrial agro waste is treated with alkali initially to remove hemicelluloses fraction followed by treatment with sodium chlorite solution varying the treatment time. The novelty of the work lies in the bleaching with chlorite treatment in alkaline medium. The treated bagasse fiber was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size analysis by dynamic light scattering technique (DLS), optical microscope, scanning electron microscope (SEM), atomic force microscope (AFM), UV spectroscope, and thermogravimetric analysis (TGA). It was found that during alkali treatment, a lattice transformation from cellulose I to cellulose II took place. Chlorite treatment removed lignin initially, and then with increasing time, the amorphous portion of cellulose is removed, rendering high crystallinity in the fiber. All the changes have been accounted by evaluation of LOI (lateral order of index), TCI (total crystallinity index), and HBI (hydrogen bond intensity) from FTIR study. XRD study also revealed the same fact. AFM study also supported the same fact indicating generation of sharp crystal and rough surface. Morphological study of treated and untreated bagasse fiber also exhibited fibrillation of fiber. Radius of hydration as estimated by DLS analysis followed a decreasing trend with increase in chlorite treatment time. The loss of transparency in cellulose fiber has been exposed by UV spectra analysis. TGA study showed that thermal stability has been increased with chlorite treatment. Such alkali treatment along with sodium chlorite for cellulose extraction from bagasse has not been performed by earlier investigators. Extracted cellulose fiber will be a very suitable reinforcing agent due to highly fibrillated morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahmad R, Hamid R, Osman SA (2019) Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Adv Civ Eng 2019. https://doi.org/10.1155/2019/5185806

  2. Balakrishnan P, Sreekala MS, Kunaver M, Huskić M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188. https://doi.org/10.1016/j.carbpol.2017.04.017

    Article  Google Scholar 

  3. Barbosa LCA, Maltha CRA, Demuner AJ et al (2013) A rapid method for quantification of carboxyl groups in cellulose pulp. Bioresources 8:1043–1054. https://doi.org/10.15376/biores.8.1.1043-1054

    Article  Google Scholar 

  4. Basak RK, Saha SG, Sarkar AK, Saha M, Das NN, Mukherjee AK (1993) Thermal properties of jute constituents and flame retardant jute fibrics. Text Res J 63:658–666. https://doi.org/10.1177/004051759306301107

    Article  Google Scholar 

  5. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. https://doi.org/10.1021/bm049300p

    Article  Google Scholar 

  6. Beyene D, Chae M, Dai J, Danumah C, Tosto F, Demesa AG, Bressler DC (2018) Characterization of cellulase-treated fibers and resulting cellulose nanocrystals generated through acid hydrolysis. Materials 11:1272–1283. https://doi.org/10.3390/ma11081272

    Article  Google Scholar 

  7. Bos A (1972) The UV spectra of cellulose and some model compounds. J App Polym Sci 16:2567–2576. https://doi.org/10.1002/app.1972.070161010

    Article  Google Scholar 

  8. Brinchi L, Contana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

    Article  Google Scholar 

  9. Cabrales L, Abidi N (2019) Kinetics of cellulose deposition in developing cotton fibers studied by thermogravimetric analysis. Fibers 7:78–83. https://doi.org/10.3390/fib7090078

  10. Camani PH, Anholon BF, Toder RR, Rosa DS (2020) Microwave-assisted pretreatment of eucalyptus waste to obtain cellulose fibers. Cellulose 27:3591–3609. https://doi.org/10.1007/s10570-020-03019-7

  11. Chen H, Qin Z, He M, Liu Y, Wu Z (2020) Application of electrochemical atomic force microscopy (EC-AFM) in the corrosion study of metallic materials. Materials 13:668. https://doi.org/10.3390/ma13030668

  12. Ching YC, Tuck SN (2014) Effect of preparation conditions of cellulose from oil palm empty fruit bunch fiber. BioRes. 9:6373–6385

    Article  Google Scholar 

  13. Csiszár E, Nagy S (2017) A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydr Polym 174:740–749. https://doi.org/10.1016/j.carbpol.2017.06.103

    Article  Google Scholar 

  14. Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102:5050–5056. https://doi.org/10.1002/app.25105

    Article  Google Scholar 

  15. Das M, Chakraborty D (2008) Thermogravimetric analysis and weathering study by water immersion of alkali-treated bamboostrips. BioRes 3:1051–1062

    Google Scholar 

  16. de Assis ACL, Alves LP, Malheiro JPT et al (2019) Opuntia Ficus-Indica L. Miller (Palma Forrageira) as an alternative source of cellulose for production of pharmaceutical dosage forms and biomaterials: extraction and characterization. Polymers 11:1124. https://doi.org/10.3390/polym11071124

    Article  Google Scholar 

  17. de Carvalho Benini KC, Ornaghi HL, Pereira PH, Maschio LJ, Voorwald HJ, Cioffi MO (2020) Survay on chemical, physical, and thermal prediction behaviors for sequential chemical treatments used to obtain cellulose from Imperata Brasiliensis. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-09221-5

  18. de Souza AG, Barbosa RFS, Rosa DS (2020) Nanocellulose from industrial and agricultural waste for further use in PLA composites. J Polym Environ 28:1851–1868. https://doi.org/10.1007/s10924-020-01731-w

    Article  Google Scholar 

  19. de Souza AG, de Lima GF, Colombo R, Rosa DS (2020) A new approach for the use of anionic surfactants:nanocellulose modification and development of biodegradable nanocomposites. Cellulose 27:5707–5728. https://doi.org/10.1007/s10570-020-03160-3

    Article  Google Scholar 

  20. Ferreira FV, Mariano M, Rabelo SC, Gouveia RF, Lona LMF (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro- to nano-scale view. Appl Surf Sci 436:1113–1122. https://doi.org/10.1016/j.ap.susc.2017.12.137

    Article  Google Scholar 

  21. Fischer EW, Lorenz R (1963) über Fehlordnungen in Polyäthylen-Einkristallen. Kolloid-Zeitschrift und Zeitschrift für Polymere 189(2):97–110

  22. Garside P, Wyeth P (2013) Identification of cellulosic fibres by ftir spectroscopy – thread and single fibre analysis by attenuated total reflectance. Stud Conserv 48:269–275. https://doi.org/10.1179/sic.2003.48.4.269

    Article  Google Scholar 

  23. Haugsted G (2012) Atomic force microscopy: understanding basic modes and advanced applications. John Wiley& Sons, Inc., Hoboken

    Book  Google Scholar 

  24. Higginbotham RS, Leigh RA (1962) Bleaching of cotton with sodium chlorite. J Text Inst 53:312–319. https://doi.org/10.1080/19447016208688724

    Article  Google Scholar 

  25. Holzwarth U, Gibson N (2011) The Scherrer equation versus the Debye-Scherrer equation. Nat Nanotechnol 6:538. https://doi.org/10.1038/nnano.2011.145

    Article  Google Scholar 

  26. Hubbell CA, Ragauskas A (2010) Effect of acid-chlorite delignification on cellulose degree of polymerization. Bioresour Technol 101:7410–7415. https://doi.org/10.1016/j.biortech.2010.04.029

    Article  Google Scholar 

  27. Gan I, Chow WS (2019) Tailoring chemical, physical, and morphological properties of sugarcane bagasse cellulose nanocrystals via phosphorylation method. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1691120

  28. Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. https://doi.org/10.1007/s10570-015-0551-0

    Article  Google Scholar 

  29. Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crop Prod 87:287–296. https://doi.org/10.1016/j.indcrop.2016.04.060

    Article  Google Scholar 

  30. Kargarzadeh H, Mariano M, Gopakumar D, Ahmad I, Thomas S, Dufresne A, Huang J, Lin N (2018) Advances in cellulose nanomaterials. Cellulose 25:2151–2189. https://doi.org/10.1007/s10570-018-1723-5

    Article  Google Scholar 

  31. Kassab Z, Kassem I, Hannache H, Bouhfid R, El Achaby M (2020) Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities. Cellulose 27:4287–4303. https://doi.org/10.1007/s10570-020-03097-7

  32. Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292. https://doi.org/10.1023/A:1018448109214

    Article  Google Scholar 

  33. Kumar A, Negi S, Choudhary V, Bhardwaj NK (2012) Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydr Polym 88:1364–1372. https://doi.org/10.1016/j.carbpol.2012.02.019

    Article  Google Scholar 

  34. Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8. https://doi.org/10.1007/978-3-642-27758-0_1162-2

    Article  Google Scholar 

  35. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488. https://doi.org/10.1021/la903111j

    Article  Google Scholar 

  36. Lam NT, Chollakup R, Smitthipong W, Nimchua T, Sukyai P (2017) Utilizing cellulose from sugarcane bagasse mixed with poly(vinyl alcohol) for tissue engineering scaffold fabrication. Ind Crop Prod 100:183–197. https://doi.org/10.1016/j.indcrop.2017.02.031

    Article  Google Scholar 

  37. Lamaming J, Hashim R, Leh CP, Sulaiman O (2017) Properties of cellulose nanocrystals from oil palm trunk isolated by total chlorine free method. Carbohydr Polym 156:409–416. https://doi.org/10.1016/j.carbpol.2016.09.053

    Article  Google Scholar 

  38. Lazic BD, Janjic SD, Rijavec T, Kostić M (2017) Effect of chemical treatments on the chemical composition and properties of flax fibers. J Serb Chem Soc 82:83–97. https://doi.org/10.2298/JSC16070716L

  39. Ma'ruf A, Pramudono B, Aryanti N (2017) Lignin isolation process from rice husk by alkaline hydrogen peroxide: lignin and silica extracted. AIP Conference Proceedings 1823:020013. https://doi.org/10.1063/1.4978086

    Article  Google Scholar 

  40. Mishra SP (2010) A text book of fibre science & tech. New age international (P) limited, Delhi

    Google Scholar 

  41. Mohomane SM, Motaung TE, Revaprasadu N (2017) Thermal degradation kinetics of sugarcane bagasse and soft wood cellulose. Materials 10:1246. https://doi.org/10.3390/ma10111246

    Article  Google Scholar 

  42. Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crop Prod 55:140–148. https://doi.org/10.1016/j.indcrop.2014.02.014

    Article  Google Scholar 

  43. Motaung TE, Linganiso LZ, Kumar R, Anandjiwada RD (2016) Agave and sisal fibre-reinforced polyfurfural alcohol composites. J Thermoplast Compos Mater. 30(10):1323–1343. https://doi.org/10.1177/2F0892705716632858

    Article  Google Scholar 

  44. Mzimela ZNT, Linganiso LZ, Revaprasadu N, Motaung TE (2018) Comparison of cellulose extraction from sugarcane bagasse through alkai. Mat Res 21(6). https://doi.org/10.1590/1980-5373-mr-2017-0750

  45. Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1321–1324. https://doi.org/10.1002/app.1964.070080322

    Article  Google Scholar 

  46. Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428. https://doi.org/10.1016/j.carres.2004.11.027

    Article  Google Scholar 

  47. Pathak P, Gupta A, Bhardwaj NK, Goyal A, Moholkar VS (2020) Impact of mild and harsh conditions of formic acid-based organosolv pretreatment on biomass fractionation of sugarcane tops. Biomass Conv Bioref 1–14. https://doi.org/10.1007/s13399-020-00629-w

  48. Pereira PHF, Oliveira TÍS, Rosa MF, Cavalcante FL, Moates GK, Wellner N, Waldron KW, Azeredo HMC (2016) Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol 88:373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074

    Article  Google Scholar 

  49. Pereira PHF, Ornaghi Júnior HL, Coutinho LV, Duchemin B, Cioffi MOH (2020) Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose 27:5745–5756. https://doi.org/10.1007/s10570-020-03179-6

    Article  Google Scholar 

  50. Phanthong P, Reubroycharoen P, Hao X, Xu G, Abudula A, Guan G (2018) Nanocellulose: extraction and application. Carbon Resour Conver 1:32–43. https://doi.org/10.1016/j.crcon.2018.05.004

    Article  Google Scholar 

  51. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos Appl Sci Manuf 38:461–468. https://doi.org/10.1016/j.compositesa.2006.02.020

    Article  Google Scholar 

  52. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricutural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

    Article  Google Scholar 

  53. Ray D, Sarkar BK, Basak RK, Rana AK (2002) Study of the thermal behavior of alkali-treated jute fibers. J Appl Polym Sci 85:2594–2599. https://doi.org/10.1002/app.10934

    Article  Google Scholar 

  54. Rezende CA, de Lima MA, Maziero P, deAzevedo E, Garcia W, Polikarpov I (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels 4:54. https://doi.org/10.1186/1754-6834-4-54

    Article  Google Scholar 

  55. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Cryst 14:1180–1185. https://doi.org/10.1107/S0365110X61003429

    Article  Google Scholar 

  56. Samal RK, Panda BB, Rout SK, Mohanty M (1995) Effect of chemical modification on FTIR spectra. I. Physical and chemical behavior of coir. Appl Polym Sci 58:745–752. https://doi.org/10.1002/app.1995.070580407

    Article  Google Scholar 

  57. Segal LC, Creely J Jr, Martin AEJ, Conard CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  58. Singh M, Kaushik A, Ahuja D (2016) Surface functionalization of nanofibrillated cellulose extracted from wheat straw: effect of process parameters. Carbohydr Polym 150:48–56. https://doi.org/10.1016/j.carbpol.2016.04.109

    Article  Google Scholar 

  59. Siró I, Plackett D (2016) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. https://doi.org/10.1007/s10570-010-9405-y

    Article  Google Scholar 

  60. Song Y, Jiang W, Zhang Y, Wang H, Zou F, Yu K, Han G (2018) A novel process of nanocellulose extraction from knaf bast. Mater Res Express 5(8)

  61. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  62. Sun D, Onyianta AJ, O’Rourke D, Perrin G, Popescu CM, Saw LH, Cai Z, Dorris M (2020) A process for deriving high quality cellulose nanofibrils from water hyacinth invasive species. Cellulose 27:3727–3740. https://doi.org/10.1007/s10570-020-03038-4

    Article  Google Scholar 

  63. Tibolla H, Pelissari FM, Rodrigues MI, Menegalli FC (2017) Cellulose nanofibers produced from banana peel by enzymatic treatment: study of process conditions. Ind Crop Prod 95:674–674. https://doi.org/10.1016/j.indcrop.2016.11.035

    Article  Google Scholar 

  64. Tu WC, Weigand L, Hummel M, Sixta H, Brandt-Talbot A, Hallett JP (2020) Characterisation of cellulose pulps isolated from Miscanthus using a low-cost acidic ionic liquid. Cellulose 27:4745–4761. https://doi.org/10.1007/s10570-020-03073-1

    Article  Google Scholar 

  65. Vanessa LA, Graziella AJ, Claudio APL, Luciano PS (2015) Cellulose nanocrystals obtained from rice by-products and their binding potential to metallic ions. J Nanomate 2015:article id: 357384. https://doi.org/10.1155/2015/357384

    Article  Google Scholar 

  66. Viera RGP, Filho GR, de Assuncao RMN, Meireles CS, Vieira JG, de Oliveira GS (2007) Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydr Polym 67:182–189. https://doi.org/10.1016/j.carbpol.2006.05.007

    Article  Google Scholar 

  67. Xie Y, Guo X, Ma Z, Gong J, Wang H, Lv Y (2020) Efficient extraction and structural characterization of hemicellulose from sugarcane bagasse pith. Polymers 12:608. https://doi.org/10.3390/polym12030608

    Article  Google Scholar 

  68. Xu E, Wang D, Lin L (2020) Chemical structure and mechanical properties of wood cell walls treated with acid and alkali solution. Forests 11:87. https://doi.org/10.3390/f11010087

  69. Zhang F-D, Xu C-H, Li M-Y, Huang A-M, Sun S-Q (2014) Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy. J Mol Struct 1069:89–95. https://doi.org/10.1016/j.molstruc.2014.01085

  70. Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation technique on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Express Polm Lett 6:794–804. https://doi.org/10.3144/expresspolymlett.2012.85

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahuya Das.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Mitra, D. & Das, M. Influence of chlorite treatment on the fine structure of alkali pretreated sugarcane bagasse. Biomass Conv. Bioref. 13, 567–581 (2023). https://doi.org/10.1007/s13399-020-01120-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01120-2

Keywords

Navigation