Skip to main content
Log in

Pyrolysis kinetics and estimation of chemical composition of Quercus cerris cork

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Pyrolysis kinetics of Quercus cerris cork was investigated using thermogravimetric analysis with heating rates of 10, 20, 50, and 100 °C min−1. The activation energies and chemical compositions of cork components were determined by different model-fitting methods, isoconversional Kissinger-Akahira-Sunose (KAS) method, and Lorentzian multi-peak fitting. Wet chemical analysis of cork was conducted to compare with the chemical compositions predicted by the kinetic models and Lorentzian multi-peak fitting. The results show that pyrolysis of Quercus cerris cork possibly follows nth-order kinetics, and best fits to the experimental data were obtained by three-halves kinetics followed by first-order and contracting sphere models. The fit qualities of the different models were close implying that the first order models could be used for practical applications. Six pseudo-components approximation used in these models suggested that while cork hemicelluloses and cellulose undergo thermal decompositions similar as in wood, cork suberin decomposes in two distinct steps, i.e., cellulose-like and lignin-like decompositions. Isoconversional KAS method showed that the average activation energy of Quercus cerris cork is approximately 298 kJ mol−1. The reconstructed mass loss curves after Lorentzian multi-peak fitting resulted in smaller activation energies for cork components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Activation energy:

Ea J mol−1

Universal gas constant:

R 8.314 J mol−1 K−1

Heating rate:

HR, β °C min−1

Temperature:

T K, °C

Time:

t min

Central peak temperature:

Tc °C

Peak width:

w °C

Peak area:

A 0.5 °C (% min−1)

Heat transfer coefficient:

h W m−2 K−1

Thermal conductivity:

k W m−1 K−1

Thermogravimetric analysis:

TGA

Differential thermogravimetry:

DTG

Conversion degree:

α

Pre-exponential factor:

k 0 , A α

Biomass fraction:

xi

Residual sum of squares:

RSS

Lorentzian multi-peak fitting:

LMPF

Kissinger-Akahira-Sunose:

KAS

References

  1. Pereira H (2007) Cork: biology, production and uses

  2. Şen A, Miranda I, Ferreira J et al (2018) Chemical composition and cellular structure of ponytail palm (Beaucarnea recurvata) cork. Ind Crop Prod 124:845–855

    Google Scholar 

  3. Şen A, Leite C, Lima L, Lopes P, Pereira H (2016) Industrial valorization of Quercus cerris bark: pilot scale fractionation. Ind Crop Prod 92:42–49. https://doi.org/10.1016/j.indcrop.2016.07.044

    Article  Google Scholar 

  4. Ingram L, Mohan D, Bricka M et al (2008) Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuel 22:614–625

    Google Scholar 

  5. Mohan D, Pittman CU Jr, Bricka M et al (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci 310:57–73

    Google Scholar 

  6. Lievens C, Mourant D, Gunawan R, Hu X, Wang Y (2015) Organic compounds leached from fast pyrolysis mallee leaf and bark biochars. Chemosphere 139:659–664

    Google Scholar 

  7. Pereira H (1992) The thermochemical degradation of cork. Wood Sci Technol 26:259–269

    Google Scholar 

  8. Neto CP, Rocha J, Gil A, Cordeiro N, Esculcas AP, Rocha S, Delgadillo I, de Jesus JDP, Correia AJF (1995) 13C solid-state nuclear magnetic resonance and Fourier transform infrared studies of the thermal decomposition of cork. Solid State Nucl Magn Reson 4:143–151

    Google Scholar 

  9. Şen A, Van Den Bulcke J, Defoirdt N et al (2014) Thermal behaviour of cork and cork components. Thermochim Acta 582:94–100. https://doi.org/10.1016/j.tca.2014.03.007

    Article  Google Scholar 

  10. Froment GF, Bischoff KB, De Wilde J (1990) Chemical reactor analysis and design. Wiley New York

  11. Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    Google Scholar 

  12. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV (2018) Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew Sust Energ Rev 82:2705–2715

    Google Scholar 

  13. Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL (2012) Thermogravimetric–mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol 109:163–172

    Google Scholar 

  14. Khawam A, Flanagan DR (2005) Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta 436:101–112

    Google Scholar 

  15. Anca-Couce A, Berger A, Zobel N (2014) How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–240

    Google Scholar 

  16. Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497

    Google Scholar 

  17. Orfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78:349–358

    Google Scholar 

  18. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90

    Google Scholar 

  19. Cordeiro N, Blayo A, Belgacem NM, Gandini A, Pascoal Neto C, LeNest JF (2000) Cork suberin as an additive in offset lithographic printing inks. Ind Crop Prod 11:63–71

    Google Scholar 

  20. Shangguan W, Chen Z, Zhao J, Song X (2018) Thermogravimetric analysis of cork and cork components from Quercus variabilis. Wood Sci Technol 52:181–192

    Google Scholar 

  21. Şen A, Miranda I, Santos S, Graça J, Pereira H (2010) The chemical composition of cork and phloem in the rhytidome of Quercus cerris bark. Ind Crop Prod 31:417–422. https://doi.org/10.1016/j.indcrop.2010.01.002

    Article  Google Scholar 

  22. Ferreira JPA, Quilhó T, Pereira H (2017) Characterization of Betula pendula outer bark regarding cork and phloem components at chemical and structural levels in view of biorefinery integration. J Wood Chem Technol 37:10–25

    Google Scholar 

  23. Zhou Z, Han L, Bollas GM (2014) Kinetics of NiO reduction by H2 and Ni oxidation at conditions relevant to chemical-looping combustion and reforming. Int J Hydrog Energy 39:8535–8556

    Google Scholar 

  24. Dhyani V, Bhaskar T (2018) Kinetic analysis of biomass pyrolysis. In: Waste Biorefinery. Elsevier, pp 39–83

  25. Xu Q, Zhang H, Li H, Zhao S, Wan L, Yan Y (2013) Pyrolysis kinetics mechanism analysis of sawdust by Sestak-Berggren function. Energy Sources, A Recov Util Environ Eff 35:936–944

    Google Scholar 

  26. Burnham AK, Braun RL (1999) Global kinetic analysis of complex materials. Energy Fuel 13:1–22

    Google Scholar 

  27. Hu S, Jess A, Xu M (2007) Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel 86:2778–2788

    Google Scholar 

  28. Tran K-Q, Bach Q-V, Trinh TT, Seisenbaeva G (2014) Non-isothermal pyrolysis of torrefied stump–a comparative kinetic evaluation. Appl Energy 136:759–766

    Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19

    Google Scholar 

  30. Varhegyi G, Antal MJ Jr, Szekely T, Szabo P (1989) Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy Fuel 3:329–335

    Google Scholar 

  31. Bartocci P, Tschentscher R, Stensrød RE, Barbanera M, Fantozzi F (2019) Kinetic analysis of digestate slow pyrolysis with the application of the master-plots method and independent parallel reactions scheme. Molecules 24:1657

    Google Scholar 

  32. Schwaab M, Pinto JC (2007) Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1: Problems involving one kinetic constant. Chem Eng Sci 62:2750–2764

    Google Scholar 

  33. Schwaab M, Lemos LP, Pinto JC (2008) Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2: Problems involving multiple reparameterizations. Chem Eng Sci 63:2895–2906

    Google Scholar 

  34. Standl S, Hinrichsen O (2018) Kinetic modeling of catalytic olefin cracking and methanol-to-olefins (MTO) over zeolites: A review. Catalysts 8:626

    Google Scholar 

  35. Katsikas L, Popović IG (2003) Improvement to the Flynn−Wall method of determining apparent activation energies of the thermal degradation of polymers. J Phys Chem B 107:7522–7525

    Google Scholar 

  36. Wang Q, Jia C, Jiang Q, Wang Y, Wu D (2014) Pyrolysis model of oil sand using thermogravimetric analysis. J Therm Anal Calorim 116:499–509

    Google Scholar 

  37. Sen A, Zhianski M, Glushkova M, Petkova K, Ferreira J, Pereira H (2016) Chemical composition and cellular structure of corks from Quercus suber trees planted in Bulgaria and Turkey. Wood Sci Technol 50:1261–1276. https://doi.org/10.1007/s00226-016-0836-y

    Article  Google Scholar 

  38. Ranzi E, Cuoci A, Faravelli T, Frassoldati A, Migliavacca G, Pierucci S, Sommariva S (2008) Chemical kinetics of biomass pyrolysis. Energy Fuel 22:4292–4300

    Google Scholar 

  39. Yuzay IE, Auras R, Soto-Valdez H, Selke S (2010) Effects of synthetic and natural zeolites on morphology and thermal degradation of poly (lactic acid) composites. Polym Degrad Stab 95:1769–1777

    Google Scholar 

  40. Wang T, Zhang R, Su W, Lu Q, Dong C (2016) Study on pyrolysis characteristics of red pepper stalks to analyze the changes of pyrolytic behaviors from xylophyta to herbage. J Anal Appl Pyrolysis 120:330–333

    Google Scholar 

  41. Demirbas A (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrolysis 72:243–248

    Google Scholar 

  42. Van de Velden M, Baeyens J, Brems A et al (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35:232–242

    Google Scholar 

  43. Lakreb N, As N, Gorgun V, Sen U, Gomes MG, Pereira H (2018) Production and characterization of particleboards from cork-rich Quercus cerris bark. Eur J Wood Wood Prod 76:989–997. https://doi.org/10.1007/s00107-017-1284-6

    Article  Google Scholar 

  44. Alvarez VA, Vázquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab 84:13–21

    Google Scholar 

  45. Yi Z, Li C, Jiang J, Zhang J, Zhang W, Li J (2015) Pyrolysis kinetics of tannin–phenol–formaldehyde resin by non-isothermal thermogravimetric analysis. J Therm Anal Calorim 121:867–876

    Google Scholar 

  46. Yaws CL, Gabbula C (2003) Yaws" Handbook of thermodynamic and physical properties of chemical compounds. Knovel

  47. Patwardhan PR, Brown RC, Shanks BH (2011) Understanding the fast pyrolysis of lignin. ChemSusChem 4:1629–1636

    Google Scholar 

  48. Grønli MG, Várhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208

    Google Scholar 

  49. Park HJ, Dong J-I, Jeon J-K, Park YK, Yoo KS, Kim SS, Kim J, Kim S (2008) Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem Eng J 143:124–132

    Google Scholar 

  50. Karmas E (1977) Preliminary studies on Arrhenius relationships of dehydration of proteins. In: Analytical Calorimetry. Springer, pp 81–90

  51. Milosavljevic I, Oja V, Suuberg EM (1996) Thermal effects in cellulose pyrolysis: relationship to char formation processes. Ind Eng Chem Res 35:653–662

    Google Scholar 

  52. Moire L, Schmutz A, Buchala A, Yan B, Stark RE, Ryser U (1999) Glycerol is a suberin monomer. New experimental evidence for an old hypothesis. Plant Physiol 119:1137–1146

    Google Scholar 

  53. Bernards MA (2002) Demystifying suberin. Can J Bot 80:227–240

    Google Scholar 

  54. Pereira H (2015) The rationale behind cork properties: a review of structure and chemistry. BioResources 10:6207–6229

    Google Scholar 

  55. Beis S, Mukkamala S, Hill N et al (2010) Fast pyrolysis of lignins. BioResources 5:1408–1424

    Google Scholar 

  56. Marques AV, Pereira H (2013) Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py–GC–MS/FID. J Anal Appl Pyrolysis 100:88–94

    Google Scholar 

  57. Budrugeac ÁP, Homentcovschi D, Segal E (2001) Critical considerations on the isoconversional methods. III. On the evaluation of the activation energy from non-isothermal data. J Therm Anal Calorim 66:557–565

    Google Scholar 

  58. Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490

    Google Scholar 

  59. Criado J, Sánchez-Jiménez P, Pérez-Maqueda L (2008) Critical study of the isoconversional methods of kinetic analysis. J Therm Anal Calorim 92:199–203

    Google Scholar 

  60. Carrier M, Auret L, Bridgwater A, Knoetze JH (2016) Using apparent activation energy as a reactivity criterion for biomass pyrolysis. Energy Fuel 30:7834–7841

    Google Scholar 

  61. Wu W, Mei Y, Zhang L, Liu R, Cai J (2014) Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuel 28:3916–3923

    Google Scholar 

  62. Plis A, Kotyczka-Morańska M, Kopczyński M, Łabojko G (2016) Furniture wood waste as a potential renewable energy source. J Therm Anal Calorim 125:1357–1371

    Google Scholar 

Download references

Acknowledgments

Forest Research Centre (CEF) is a research unit funded by the Fundação para a Ciência e a Tecnologia (FCT) (UIDB/00239/2020). A. Umut Sen acknowledges the postdoctoral fellowship from FCT (SFRH/BPD/87632/2012) and thanks the Chemical Engineering Department of Instituto Superior Técnico for the laboratorial use. The authors thank Joaquina Martins for her help in chemical analysis. F. G. Fonseca is a member of the BBW ForWerts Graduate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Umut Şen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şen, A.U., Fonseca, F.G., Funke, A. et al. Pyrolysis kinetics and estimation of chemical composition of Quercus cerris cork. Biomass Conv. Bioref. 12, 4835–4845 (2022). https://doi.org/10.1007/s13399-020-00964-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00964-y

Keywords

Navigation