Skip to main content

Advertisement

Log in

Insights into the hydrolysis of Eucalyptus dunnii bark by xylanolytic extracts of Pseudozyma sp.

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Transforming lignocellulosic biomass into C5 and C6 sugars suitable to produce biofuels, building blocks, and high-value-added compounds is a key aspect of sustainable strategies and is central to the biorefinery concept. Xylan is found acetylated and bound to cellulose and lignin forming an insoluble complex in nature, and its degradation involves a collection of enzymes acting together. To gain a better understanding of this process, the present study focuses on the elucidation of the main products resulting from the hydrolysis of delignified Eucalyptus dunnii bark by an enzymatic extract from Pseudozyma sp. with xylanase and acetylxylan esterase activities but no cellulase activity. Scanning electron microscopy (SEM) studies of the insoluble fraction after hydrolysis revealed cracking on the surface of the material. The enzymatic activity of the crude yeast extract was evidenced by TLC and HPLC analysis of the hydrolysate, which allowed us to detect xylose, acetylxylobiose, and acetic acid. Finally, the principal low molecular weight products obtained from this process were characterized by nuclear magnetic resonance (NMR) spectroscopy as xylose and 3-O-acetylxylobiose. Based on these spectroscopic and chromatographic results, it was possible to estimate a 4:1 ratio of xylose to 3-O-acetylxylobiose. These results highlight the importance of using an enzymatic system for effective xylan degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. División general Forestal MGAP (2019) Estadísticas Forestales 2019. https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/sites/ministerio-ganaderia-agricultura-pesca/files/2020-02/dgf_boletin_estadistico.pdf. Accessed 26 Jan 2020

  2. Reina L, Botto E, Mantero C, Moyna P, Menéndez P (2016) Production of second generation ethanol using Eucalyptus dunnii bark residues and ionic liquid pretreatment. Biomass Bioenergy 93:116–121. https://doi.org/10.1016/j.biombioe.2016.06.023

    Article  Google Scholar 

  3. Faraco V (2013) Lignocellulose conversion. Springer, Berlin

    Book  Google Scholar 

  4. Mussatto SI (2016) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam

    Google Scholar 

  5. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c3py00085k

    Article  Google Scholar 

  6. Puchart V, Mørkeberg Krogh KBR, Biely P (2019) Glucuronoxylan 3-O-acetylated on uronic acid-substituted xylopyranosyl residues and its hydrolysis by GH10, GH11 and GH30 endoxylanases. Carbohydr Polym 205:217–224. https://doi.org/10.1016/j.carbpol.2018.10.043

    Article  Google Scholar 

  7. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  8. Evtuguin DV, Tomás JL, Silva AMS, Neto CP (2003) Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill. Carbohydr Res 338:597–604. https://doi.org/10.1016/S0008-6215(02)00529-3

    Article  Google Scholar 

  9. da Silva Magaton A, Piló-Veloso D, Colodette JL (2008) Caracterização das o-acetil-(4-o-metilglicurono)xilanas isoladas da madeira de Eucalyptus urograndis. Quim Nova 31:1085–1088. https://doi.org/10.1590/S0100-40422008000500027

    Article  Google Scholar 

  10. Wei WB, Li LN, Chang L, Wang Z (2013) Chemical and structural characterization of alkaline-extractable hemicelluloses from various eucalyptus species. J Appl Polym Sci 130:2390–2398. https://doi.org/10.1002/app.39430

    Article  Google Scholar 

  11. Kumar S, Sani RK (2017) Biorefining of biomass to biofuels: opportunities and perception. Springer International Publishing, Cham

    Google Scholar 

  12. Ali El Enshasy H, Kunhi Kandiyil S, Malek R et al (2016) Microbial xylanases: sources, types, and their applications. In: Gupta V (ed) Microbial Enzymes in Bioconversions of Biomass. Springer, Cham, pp 151–213

    Chapter  Google Scholar 

  13. Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166. https://doi.org/10.1016/S0168-1656(97)00096-5

    Article  Google Scholar 

  14. Li K, Azadi P, Collins R et al (2000) Relationships between activities of xylanases and xylan structures. Enzym Microb Technol 27:89–94. https://doi.org/10.1016/S0141-0229(00)00190-3

    Article  Google Scholar 

  15. Stjohn FJ, Rice JD, Preston JF (2006) Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl Environ Microbiol 72:1496–1506. https://doi.org/10.1128/AEM.72.2.1496-1506.2006

    Article  Google Scholar 

  16. Biely P, Singh S, Puchart V (2016) Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnol Adv 34:1260–1274. https://doi.org/10.1016/j.biotechadv.2016.09.001

    Article  Google Scholar 

  17. Chen Z, Zaky AA, Liu Y, Chen Y, Liu L, Li S, Jia Y (2019) Purification and characterization of a new xylanase with excellent stability from Aspergillus flavus and its application in hydrolyzing pretreated corncobs. Protein Expr Purif 154:91–97. https://doi.org/10.1016/j.pep.2018.10.006

    Article  Google Scholar 

  18. Puchart V, Fraňová L, Mørkeberg Krogh KBR, Hoff T, Biely P (2018) Action of different types of endoxylanases on eucalyptus xylan in situ. Appl Microbiol Biotechnol 102:1725–1736. https://doi.org/10.1007/s00253-017-8722-6

    Article  Google Scholar 

  19. Huang Y-C, Chen G-H, Chen Y-F, Chen WL, Yang CH (2010) Heterologous expression of thermostable acetylxylan esterase gene from Thermobifida fusca and its synergistic action with xylanase for the production of xylooligosaccharides. Biochem Biophys Res Commun 400:718–723. https://doi.org/10.1016/j.bbrc.2010.08.136

    Article  Google Scholar 

  20. Zheng F, Huang J, Yin Y, Ding S (2013) A novel neutral xylanase with high SDS resistance from Volvariella volvacea: characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. J Ind Microbiol Biotechnol 40:1083–1093. https://doi.org/10.1007/s10295-013-1312-4

    Article  Google Scholar 

  21. Zhang Y, Yang H, Yu X, et al (2019) Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express 9:. https://doi.org/10.1186/s13568-019-0740-6

  22. Bragatto J, Segato F, Squina FM (2013) Production of xylooligosaccharides (XOS) from delignified sugarcane bagasse by peroxide-HAc process using recombinant xylanase from Bacillus subtilis. Ind Crop Prod 51:123–129. https://doi.org/10.1016/j.indcrop.2013.08.062

    Article  Google Scholar 

  23. Razeq FM, Jurak E, Stogios PJ, Yan R, Tenkanen M, Kabel MA, Wang W, Master ER (2018) A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans. Biotechnol Biofuels 11:1–12. https://doi.org/10.1186/s13068-018-1074-3

    Article  Google Scholar 

  24. Botto E, Gioia L, Menéndez M d P, Rodríguez P (2019) Pseudozyma sp. isolation from Eucalyptus leaves and its hydrolytic activity over xylan. Biocatal Agric Biotechnol 21:101282. https://doi.org/10.1016/j.bcab.2019.101282

    Article  Google Scholar 

  25. Sluiter A, Ruiz R, Scarlata C, et al (2008) Determination of extractives in biomass NREL/TP-510-42619. National Renewable Energy Laboratory. Colorado. http://www.nrel.gov/biomass/pdfs/42619.pdf. Accessed 26 Feb 2020

  26. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270. https://doi.org/10.1016/0168-1656(92)90074-J

    Article  Google Scholar 

  27. Adney B, Baker J (2008) Measurement of cellulase activities NREL/TP-510-42628. National Renewable Energy Laboratory. Golden. https://www.nrel.gov/docs/gen/fy08/42628.pdf. Accessed 26 Feb 2020

  28. Kessler H, Oschkinat H, Griesinger C, Bermel W (1986) Transformation of homonuclear two-dimensional NMR techniques into one-dimensional techniques using Gaussian pulses. J Magn Reson 70:106–133. https://doi.org/10.1016/0022-2364(86)90366-5

    Article  Google Scholar 

  29. Yu Z, Jameel H, Chang HM, Park S (2011) The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol 102:9083–9089

    Article  Google Scholar 

  30. Xiong L, Kameshwar AKS, Chen X, Guo Z, Mao C, Chen S, Qin W (2016) The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks. Microb Cell Factories 15:1–18. https://doi.org/10.1186/s12934-016-0614-4

    Article  Google Scholar 

  31. Alvarez-Zúñiga MT, Santiago-Hernández A, Rodríguez-Mendoza J, Campos JE, Pavón-Orozco P, Trejo-Estrada S, Hidalgo-Lara ME (2017) Taxonomic identification of the thermotolerant and fast-growing fungus Lichtheimia ramosa H71D and biochemical characterization of the thermophilic xylanase LrXynA. AMB Express 7:194. https://doi.org/10.1186/s13568-017-0494-y

    Article  Google Scholar 

  32. Waksmundzka-Hajnos M, Sherma J, Kowalska T (2008) Thin layer chromatography in phytochemistry. CRC Press, Boca Raton ISBN 978-1-4200-4677-9

    Book  Google Scholar 

  33. Biely P, Cziszarova M, Uhliarikova I et al (2013) Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochim Biophys Acta 1830:5075–5086. https://doi.org/10.1016/j.bbagen.2013.07.018

    Article  Google Scholar 

  34. Poutanen K, Sundberg M, Korte H, Puls J (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510. https://doi.org/10.1007/BF00172542

    Article  Google Scholar 

  35. Biely P, MacKenzie CR, Puls J, Schneider H (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4:731–733. https://doi.org/10.1038/nbt0886-731

    Article  Google Scholar 

  36. Biely P, Puls J, Schneider H (1985) Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett 186:80–84. https://doi.org/10.1016/0014-5793(85)81343-0

    Article  Google Scholar 

  37. Lundborg M, Widmalm G (2011) Structural analysis of glycans by NMR chemical shift prediction. Anal Chem 83:1514–1517. https://doi.org/10.1021/ac1032534

    Article  Google Scholar 

  38. Korte HE, Offermann W, Puls J (1991) Characterization and preparation of substituted xylo-oligosaccharides from steamed birchwood. Holzforschung 45:419–424. https://doi.org/10.1515/hfsg.1991.45.6.419

    Article  Google Scholar 

  39. Uhliariková I, Vršanská M, McCleary BV, Biely P (2013) Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study. Biochim Biophys Acta, Gen Subj 1830:3365–3372. https://doi.org/10.1016/j.bbagen.2013.01.011

    Article  Google Scholar 

  40. Naran R, Black S, Decker SR, Azadi P (2009) Extraction and characterization of native heteroxylans from delignified corn stover and aspen. Cellulose 16:661–675. https://doi.org/10.1007/s10570-009-9324-y

    Article  Google Scholar 

  41. Teleman A, Lundqvist J, Tjerneld F et al (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815. https://doi.org/10.1016/S0008-6215(00)00249-4

    Article  Google Scholar 

  42. Arai T, Biely P, Uhliariková I et al (2019) Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J Biosci Bioeng 127:222–230. https://doi.org/10.1016/j.jbiosc.2018.07.016

    Article  Google Scholar 

  43. Torres Faria N, Marques S, Castelo Ferreira F, Fonseca C (2019) Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery’s spent grain as substrates. New Biotechnol 49:137–143. https://doi.org/10.1016/j.future.2016.12.038

    Article  Google Scholar 

  44. de Jong E, Stichnothe H, Bell G, Jørgensen H (2020) Task 42: Bio-based chemicals. A 2020 update

Download references

Funding

This study was funded by the Agencia Nacional de Investigación e Innovación (award FSE_1_2014_1_102762), the Comisión Académica de Posgrado, and the Programa de Desarrollo de las Ciencias Básicas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botto, E., Reina, L., Moyna, G. et al. Insights into the hydrolysis of Eucalyptus dunnii bark by xylanolytic extracts of Pseudozyma sp.. Biomass Conv. Bioref. 12, 3249–3256 (2022). https://doi.org/10.1007/s13399-020-00827-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00827-6

Keywords

Navigation