Skip to main content
Log in

Alkyl β-D-xyloside synthesis from black liquor xylan using Aureobasidium pullulans CBS 135684 β-xylosidases immobilized on spent expanded perlite

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The crude β-xylosidase from Aureobasidium pullulans CBS 135684 was immobilized on the surface of the modified spent expanded perlite via (3-aminopropyl) triethoxy-silane and glutaraldehyde cross-linking reaction. Over 80% of the initial free enzyme activity was detected on the bound enzyme. The immobilized β-xylosidase (204.7 ± 6.5 U g-1 of perlite) exhibited transxylosylation activity when sugars from black liquor xylan hydrolysate and a variety of alcohols (C1-6) were used as donor and acceptor molecules, respectively, yielding a number of alkyl xylosides. The synthesized hexyl xyloside exhibited some interesting properties comparable with those of a commercial hexyl glucoside, including an antioxidant activity (IC50 = 8.9 ± 2.0 mg mL-1), wetting time (43 s), and critical micelle concentration value (252 mmol L-1). Optimization for hexyl xyloside synthesis was performed via statistical analysis using a Box and Behnken design. The maximum predicted yield of hexyl xyloside (499.0 ± 1.1 mg g-1 xylan hydrolysate) was obtained with 10% (w/v) xylan hydrolysate, 10 U g-1 immobilized β-xylosidase, and 13% (v/v) hexanol at 70 °C, pH 6.0 for 4 h, and it was validated by the following experimental yield (498.9 ± 4.8 mg g-1 xylan hydrolysate). The maximum production yield remained relatively stable after the immobilized enzyme was reused for 12 cycles with a 471.5 ± 15.1 mg g-1 hexyl xyloside yield (94.4% of the first cycle). Thus, the immobilized β-xylosidase has a high potential as a robust catalyst for application in alkyl xyloside production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leathers TD (1986) Color variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol 52(5):1026–1030

    Article  Google Scholar 

  2. Tanaka H, Okuno T, Moriyama S, Muguruma M, Ohta K (2004) Acidophilic xylanase from Aureobasidium pullulans: efficient expression and secretion in Pichia pastoris and mutational analysis. J Biosci Bioeng 98(5):338–343. https://doi.org/10.1016/S1389-1723(04)00292-0

    Article  Google Scholar 

  3. Goswami GK, Pathak RR (2013) Microbial xylanases and their biomedical applications: a review. Int J Basic Clin Pharmacol 2(3):237–246

    Article  Google Scholar 

  4. Lotrakul P, Unhapattaratitikul P, Seelanan T, Prasongsuk S, Punnapayak H (2013) An aubasidan-like β-glucan produced by Aureobasidium pullulans in Thailand. ScienceAsia 39(4):363–368. https://doi.org/10.2306/scienceasia1513-1874.2013.39.363

    Article  Google Scholar 

  5. Prasongsuk S, Ployngam S, Wacharasindhu S, Lotrakul P, Punnapayak H (2013) Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL 58536 antifungal activity against four Aspergillus species. Appl Microbiol Biotechnol 97(17):7821–7830. https://doi.org/10.1007/s00253-013-5069-5

    Article  Google Scholar 

  6. Prasongsuk S, Lotrakul P, Ali I, Bankeeree W, Punnapayak H (2018) The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol 63(2):129–140. https://doi.org/10.1007/s12223-017-0561-4

    Article  Google Scholar 

  7. Bankeeree W, Akada R, Lotrakul P, Punnapayak H, Prasongsuk S (2018) Enzymatic hydrolysis of black liquor xylan by a novel xylose-tolerant, thermostable β-xylosidase from a tropical strain of Aureobasidium pullulans CBS 135684. Appl Biochem Biotechnol 184(3):919–934. https://doi.org/10.1007/s12010-017-2598-x

    Article  Google Scholar 

  8. Kurakake M, Fujii T, Yata M, Okazaki T, Komaki T (2005) Characteristics of transxylosylation by β-xylosidase from Aspergillus awamori K4. Biochim Biophys Acta, Gen Subj 1726(3):272–279. https://doi.org/10.1016/j.bbagen.2005.08.009

    Article  Google Scholar 

  9. Muzard M, Aubry N, Plantier-Royon R, O’Donohue M, Rémond C (2009) Evaluation of the transglycosylation activities of a GH 39 β-d-xylosidase for the synthesis of xylose-based glycosides. J Mol Catal B-Ezym 58(1):1–5. https://doi.org/10.1016/j.molcatb.2008.10.004

    Article  Google Scholar 

  10. Mamo G, Kasture S, Faryar R, Hashim S, Hatti-Kaul R (2010) Surfactants from xylan: production of n-octyl xylosides using a highly thermostable xylanase from Thermotoga neapolitana. Process Biochem 45(5):700–705. https://doi.org/10.1016/j.procbio.2010.01.005

    Article  Google Scholar 

  11. Papadopoulou E, Hatjiissaak A, Estrine B, Marinkovic S (2011) Novel use of biomass derived alkyl-xylosides in wetting agent for paper impregnation suitable for the wood-based industry. Eur J Wood Wood Prod 69(4):579–585. https://doi.org/10.1007/s00107-010-0513-z

    Article  Google Scholar 

  12. Oldham ED, Seelam S, Lema C, Aguilera RJ, Fiegel J, Rankin SE, Knutson BL, Lehmler H-J (2013) Synthesis, surface properties, and biocompatibility of 1,2,3-triazole-containing alkyl β-d-xylopyranoside surfactants. Carbohydr Res 379:68–77. https://doi.org/10.1016/j.carres.2013.06.020

    Article  Google Scholar 

  13. Xu W, Osei-Prempeh G, Lema C, Davis Oldham E, Aguilera RJ, Parkin S, Rankin SE, Knutson BL, Lehmler H-J (2012) Synthesis, thermal properties, and cytotoxicity evaluation of hydrocarbon and fluorocarbon alkyl β-d-xylopyranoside surfactants. Carbohydr Res 349:12–23. https://doi.org/10.1016/j.carres.2011.11.020

    Article  Google Scholar 

  14. Söderlind E, Wollbratt M, von Corswant C (2003) The usefulness of sugar surfactants as solubilizing agents in parenteral formulations. Int J Pharm 252(1):61–71. https://doi.org/10.1016/S0378-5173(02)00599-9

    Article  Google Scholar 

  15. Jain I, Kumar V, Satyanarayana T (2014) Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresour Technol 170:462–469. https://doi.org/10.1016/j.biortech.2014.07.113

    Article  Google Scholar 

  16. Ochs M, Muzard M, Plantier-Royon R, Estrine B, Rémond C (2011) Enzymatic synthesis of alkyl β-d-xylosides and oligoxylosides from xylans and from hydrothermally pretreated wheat bran. Green Chem 13(9):2380–2388. https://doi.org/10.1039/C1GC15719A

    Article  Google Scholar 

  17. Smaali I, Rémond C, Skhiri Y, O’Donohue MJ (2009) Biocatalytic conversion of wheat bran hydrolysate using an immobilized GH43 β-xylosidase. Bioresour Technol 100(1):338–344. https://doi.org/10.1016/j.biortech.2008.06.041

    Article  Google Scholar 

  18. Benassi VM, Silva TM, Pessela BC, Guisan JM, Mateo C, Lima MS, Jorge JA, Polizeli MLTM (2013) Immobilization and biochemical properties of a β-xylosidase activated by glucose/xylose from Aspergillus niger USP-67 with transxylosylation activity. J Mol Catal B Enzym 89:93–101. https://doi.org/10.1016/j.molcatb.2012.12.010

    Article  Google Scholar 

  19. Terrasan CRF, Trobo-Maseda L, Moreno-Pérez S, Carmona EC, Pessela BC, Guisan JM (2016) Co-immobilization and stabilization of xylanase, β-xylosidase and α-l-arabinofuranosidase from Penicillium janczewskii for arabinoxylan hydrolysis. Process Biochem 51(5):614–623. https://doi.org/10.1016/j.procbio.2016.02.014

    Article  Google Scholar 

  20. Ivankovic T, Hrenovic J, Sekovanic L (2010) Influence of the degree of perlite expansion on immobilization of Acinetobacter junii. Biochem Eng J 51(3):117–123. https://doi.org/10.1016/j.bej.2010.06.004

    Article  Google Scholar 

  21. Zhang J, Liu Y, Feng T, Zhou M, Zhao L, Zhou A, Li Z (2017) Immobilizing bacteria in expanded perlite for the crack self-healing in concrete. Constr Build Mater 148:610–617. https://doi.org/10.1016/j.conbuildmat.2017.05.021

    Article  Google Scholar 

  22. Shavisi Y, Sharifnia S, Hosseini SN, Khadivi MA (2014) Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater. J Ind Eng Chem 20(1):278–283. https://doi.org/10.1016/j.jiec.2013.03.037

    Article  Google Scholar 

  23. Liffourrena AS, Lucchesi GI (2018) Alginate-perlite encapsulated Pseudomonas putida A (ATCC 12633) cells: preparation, characterization and potential use as plant inoculants. J Biotechnol 278:28–33. https://doi.org/10.1016/j.jbiotec.2018.04.019

    Article  Google Scholar 

  24. Rodriguez J, Soria F, Geronazzo H, Destefanis H (2016) Modification and characterization of natural aluminosilicates, expanded perlite, and its application to immobilise α–amylase from A. oryzae. J Mol Catal B Enzym 133:259–270. https://doi.org/10.1016/j.molcatb.2017.01.012

    Article  Google Scholar 

  25. Atlas RM (2010) Handbook of microbiological media. CRC Press, Florida

    Book  Google Scholar 

  26. Torabi SF, Khajeh K, Ghasempur S, Ghaemi N, Siadat SOR (2007) Covalent attachment of cholesterol oxidase and horseradish peroxidase on perlite through silanization: activity, stability and co-immobilization. J Biotechnol 131(2):111–120. https://doi.org/10.1016/j.jbiotec.2007.04.015

    Article  Google Scholar 

  27. Pezzella C, Russo ME, Marzocchella A, Salatino P, Sannia G (2014) Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation. Biomed Res Int 308613(11):1–12. https://doi.org/10.1155/2014/308613

    Article  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  Google Scholar 

  29. Bankeeree W, Prasongsuk S, Imai T, Lotrakul P, Punnapayak H (2016) A novel xylan-polyvinyl alcohol hydrogel bead with laccase entrapment for decolorization of reactive black 5. BioResources 11:6984–7000

    Article  Google Scholar 

  30. Jiang Z, Zhu Y, Li L, Yu X, Kusakabe I, Kitaoka M, Hayashi K (2004) Transglycosylation reaction of xylanase B from the hyperthermophilic Thermotoga maritima with the ability of synthesis of tertiary alkyl β-d-xylobiosides and xylosides. J Biotechnol 114(1):125–134

    Article  Google Scholar 

  31. Rosenthal KS, Koussaie F (1983) Critical micelle concentration determination of nonionic detergents with Coomassie brilliant blue G-250. Anal Chem 55(7):1115–1117

    Article  Google Scholar 

  32. Chen G, Li Z, Chen L, Ji S, Shen W (2016) Synthesis and properties of alkyl β-D-galactopyranoside. J Surfactant Deterg 19(6):1095–1105

    Article  Google Scholar 

  33. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30

    Article  Google Scholar 

  34. Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2(4):455–475

    Article  MathSciNet  Google Scholar 

  35. Kumar RR, Cho JY (2014) Reuse of hydroponic waste solution. Environ Sci Pol 21:9569–9577

    Article  Google Scholar 

  36. Briga-Sá A, Nascimento D, Teixeira N, Pinto J, Caldeira F, Varum H, Paiva A (2013) Textile waste as an alternative thermal insulation building material solution. Constr Build Mater 38:155–160

    Article  Google Scholar 

  37. Kotwica Ł, Pichór W, Kapeluszna E, Różycka A (2017) Utilization of waste expanded perlite as new effective supplementary cementitious material. J Clean Prod 140:1344–1352. https://doi.org/10.1016/j.jclepro.2016.10.018

    Article  Google Scholar 

  38. Zhang D, Hegab HE, Lvov Y, Dale Snow L, Palmer J (2016) Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. SpringerPlus 5(1):48

    Article  Google Scholar 

  39. Shinoyama H, Kamiyama Y, Yasui T (1988) Enzymatic synthesis of alkyl β-xylosides from xylobiose by application of the transxylosyl reaction of Aspergillus niger β-xylosidase. Agric Biol Chem 52(9):2197–2202

    Google Scholar 

  40. Rather MY, Mishra S (2013) β-Glycosidases: an alternative enzyme based method for synthesis of alkyl-glycosides. Sustain chem process 1(1):7–22

    Article  Google Scholar 

  41. Nieto-Domínguez M, de Eugenio LI, Barriuso J, Prieto A, de Toro BF, Canales-Mayordomo Á, Martínez MJ (2015) Characterization of a novel pH-stable GH3 β-xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation. Appl Environ Microbiol 81:6380–6392

    Article  Google Scholar 

  42. Matsumura S, Sakiyama K, Toshima K (1997) One-pot synthesis of alkyl β-D-xylobioside from xylan and alcohol by acetone powder of Aureobasidium pullulans. Biotechnol Lett 19(12):1249–1253

    Article  Google Scholar 

  43. Rosen MJ, Kunjappu JT (2014) Surfactants and interfacial phenomena. Wiley, Hoboken. NJ, USA

    Google Scholar 

  44. Gargouri M, Smaali I, Maugard T, Legoy MD, Marzouki N (2004) Fungus β-glycosidases: immobilization and use in alkyl-β-glycoside synthesis. J Mol Catal B-Enzym 29(1):89–94

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful for ACK Hydro Farm Co., Ltd. and Double A (1991) Public Co., Ltd. for providing the materials in this study and Dr. Rico Ramadhan, Universitas Airlangga, for the helpful NMR interpretation.

Funding

This research was performed under funding from the Japan-ASEAN Science, Technology and Innovation Platform (JASTIP) and Grant for Development of New Faculty Staff, Ratchadapiseksomphot Endowment Fund, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wichanee Bankeeree.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankeeree, W., Watanabe, T., Punnapayak, H. et al. Alkyl β-D-xyloside synthesis from black liquor xylan using Aureobasidium pullulans CBS 135684 β-xylosidases immobilized on spent expanded perlite. Biomass Conv. Bioref. 12, 2677–2686 (2022). https://doi.org/10.1007/s13399-020-00755-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00755-5

Keywords

Navigation