Skip to main content
Log in

Hydrophobic carboxylic acid based deep eutectic solvent for the removal of diclofenac

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the current study, carboxylic acid-based deep eutectic solvent including a hydrogen bond donor (acetic acid) and a hydrogen bond acceptor (menthol) has been synthesized and applied for the removal of diclofenac from its aqueous medium. Physical properties (acidity, density, viscosity, and refractive index) of the synthesized liquids were determined quantitatively. The designed deep eutectic solvent was also characterized by Fourier transform infrared spectroscopy method. The removal of diclofenac has been reached to ≈ 80% through the proposed solvent system of reactive liquid extraction. Initial DIC concentration (9.87, 20.29, 29.44, 38.83, and 48.28 mg L−1), deep eutectic solvent level (0, 20, 40, 60, and 80%) in diethyl succinate, and the temperature (293.15, 303.15, 313.15, and 323.15 K) have affected the extraction efficiency. Ionic concentration in extraction medium leads to drop the diclofenac removal. Effects of fluorine and chlorine on the removal of diclofenac have been also investigated. Thermodynamics of the diclofenac transfer from aqueous environment to organic phase containing deep eutectic solvent has been found to be a spontaneous and endothermic process, which is incentivized by entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Şahin S, Elhussein EAA, Bilgin M, Kurtulbaş E, Bayazit ŞS (2018) Investigation of extractive interaction between ionic liquids and carbamazepine. J Mol Liq 268:523–528. https://doi.org/10.1016/J.MOLLIQ.2018.07.088

    Article  Google Scholar 

  2. Bhadra BN, Seo PW, Jhung SH (2016) Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem Eng J 301:27–34. https://doi.org/10.1016/j.cej.2016.04.143

    Article  Google Scholar 

  3. Sotelo JL, Ovejero G, Rodríguez A et al (2014) Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem Eng J 240:443–453. https://doi.org/10.1016/j.cej.2013.11.094

    Article  Google Scholar 

  4. Loos R, Gawlik BM, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568. https://doi.org/10.1016/j.envpol.2008.09.020

    Article  Google Scholar 

  5. Hossein Beyki M, Mohammadirad M, Shemirani F, Saboury AA (2017) Magnetic cellulose ionomer/layered double hydroxide: an efficient anion exchange platform with enhanced diclofenac adsorption property. Carbohydr Polym 157:438–446. https://doi.org/10.1016/j.carbpol.2016.10.017

    Article  Google Scholar 

  6. Liang XX, Omer AM, Hu ZH et al (2019) Efficient adsorption of diclofenac sodium from aqueous solutions using magnetic amine-functionalized chitosan. Chemosphere 217:270–278. https://doi.org/10.1016/j.chemosphere.2018.11.023

    Article  Google Scholar 

  7. Gil A, Santamaría L, Korili SA (2018) Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloids Interface Sci Commun 22:25–28. https://doi.org/10.1016/j.colcom.2017.11.007

    Article  Google Scholar 

  8. Cantarella M, Carroccio SC, Dattilo S et al (2019) Molecularly imprinted polymer for selective adsorption of diclofenac from contaminated water. Chem Eng J 367:180–188. https://doi.org/10.1016/j.cej.2019.02.146

    Article  Google Scholar 

  9. França DB, Trigueiro P, Silva Filho EC et al (2020) Monitoring diclofenac adsorption by organophilic alkylpyridinium bentonites. Chemosphere 242. https://doi.org/10.1016/j.chemosphere.2019.125109

  10. De Oliveira T, Guégan R, Thiebault T et al (2017) Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions. J Hazard Mater 323:558–566. https://doi.org/10.1016/j.jhazmat.2016.05.001

    Article  Google Scholar 

  11. Larous S, Meniai AH (2016) Adsorption of Diclofenac from aqueous solution using activated carbon prepared from olive stones. Int J Hydrog Energy. Elsevier Ltd:10380–10390

  12. Leone VO, Pereira MC, Aquino SF et al (2018) Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies. New J Chem 42:437–449. https://doi.org/10.1039/c7nj03214e

    Article  Google Scholar 

  13. Zhao Y, Liu F, Qin X (2017) Adsorption of diclofenac onto goethite: adsorption kinetics and effects of pH. Chemosphere 180:373–378. https://doi.org/10.1016/j.chemosphere.2017.04.007

    Article  Google Scholar 

  14. de Franco MAE, de Carvalho CB, Bonetto MM et al (2018) Diclofenac removal from water by adsorption using activated carbon in batch mode and fixed-bed column: isotherms, thermodynamic study and breakthrough curves modeling. J Clean Prod 181:145–154. https://doi.org/10.1016/j.jclepro.2018.01.138

    Article  Google Scholar 

  15. Lonappan L, Rouissi T, Kaur Brar S, Verma M, Surampalli RY (2018) An insight into the adsorption of diclofenac on different biochars: mechanisms, surface chemistry, and thermodynamics. Bioresour Technol 249:386–394. https://doi.org/10.1016/j.biortech.2017.10.039

    Article  Google Scholar 

  16. Jauris IM, Matos CF, Saucier C, Lima EC, Zarbin AJ, Fagan SB, Machado FM, Zanella I (2016) Adsorption of sodium diclofenac on graphene: a combined experimental and theoretical study. Phys Chem Chem Phys 18:1526–1536. https://doi.org/10.1039/c5cp05940b

    Article  Google Scholar 

  17. Seifollahi Z, Rahbar-Kelishami A (2017) Diclofenac extraction from aqueous solution by an emulsion liquid membrane: parameter study and optimization using the response surface methodology. J Mol Liq 231:1–10. https://doi.org/10.1016/j.molliq.2017.01.081

    Article  Google Scholar 

  18. Priyanka VP, Gardas RL (2020) Mono- and di- cationic ionic liquids based aqueous biphasic systems for the extraction of diclofenac sodium. Sep Purif Technol:234. https://doi.org/10.1016/j.seppur.2019.116048

  19. Şahin S, Kurtulbaş E (2020) An advanced approach for the recovery of acetic acid from its aqueous media: deep eutectic liquids versus ionic liquids. Biomass Convers Biorefinery:1–9. https://doi.org/10.1007/s13399-019-00599-8

  20. Şahin S (2019) Tailor-designed deep eutectic liquids as a sustainable extraction media: an alternative to ionic liquids. J Pharm Biomed Anal 174:324–329. https://doi.org/10.1016/J.JPBA.2019.05.059

    Article  Google Scholar 

  21. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr300162p

    Article  Google Scholar 

  22. Farajzadeh MA, Sohrabi H, Mohebbi A, Mogaddam MRA (2019) Combination of a modified quick, easy, cheap, efficient, rugged, and safe extraction method with a deep eutectic solvent based microwave-assisted dispersive liquid–liquid microextraction: application in extraction and preconcentration of multiclass pesticide residues in tomato samples. J Sep Sci 42:1273–1280. https://doi.org/10.1002/jssc.201801107

    Article  Google Scholar 

  23. Liu X, Chen M, Meng Z et al (2020) Extraction of benzoylurea pesticides from tea and fruit juices using deep eutectic solvents. J Chromatogr B Anal Technol Biomed Life Sci 1140:121995. https://doi.org/10.1016/j.jchromb.2020.121995

    Article  Google Scholar 

  24. Xu K, Wang Y, Huang Y et al (2014) A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal Chim Acta 864:9–20. https://doi.org/10.1016/j.aca.2015.01.026

    Article  Google Scholar 

  25. Morrison HG, Sun CC, Neervannan S (2009) Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles. Int J Pharm 378:136–139. https://doi.org/10.1016/j.ijpharm.2009.05.039

    Article  Google Scholar 

  26. Tang W, Dai Y, Row KH (2018) Evaluation of fatty acid/alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water. Anal Bioanal Chem 410:7325–7336. https://doi.org/10.1007/s00216-018-1346-6

    Article  Google Scholar 

  27. Florindo C, Branco LC, Marrucho IM (2017) Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. Fluid Phase Equilib 448:135–142. https://doi.org/10.1016/j.fluid.2017.04.002

    Article  Google Scholar 

  28. Van Osch DJGP, Parmentier D, Dietz CHJT et al (2016) Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents. Chem Commun 52:11987–11990. https://doi.org/10.1039/c6cc06105b

    Article  Google Scholar 

  29. Makoś P, Przyjazny A, Boczkaj G (2018) Hydrophobic deep eutectic solvents as “green” extraction media for polycyclic aromatic hydrocarbons in aqueous samples. J Chromatogr A 1570:28–37. https://doi.org/10.1016/j.chroma.2018.07.070

    Article  Google Scholar 

  30. Křížek T, Bursová M, Horsley R et al (2018) Menthol-based hydrophobic deep eutectic solvents: towards greener and efficient extraction of phytocannabinoids. J Clean Prod 193:391–396. https://doi.org/10.1016/j.jclepro.2018.05.080

    Article  Google Scholar 

  31. Abbott AP, Al-Murshedi AYM, Alshammari OAO et al (2017) Thermodynamics of phase transfer for polar molecules from alkanes to deep eutectic solvents. Fluid Phase Equilib 448:99–104. https://doi.org/10.1016/j.fluid.2017.05.008

    Article  Google Scholar 

  32. Doyurum S(, Yusan ), Erenturk S, Yusan S (2011) Adsorption characterization of strontium on PAN/zeolite composite adsorbent chemometric methods view project measurement of radioactivity of soil, sediment and aqueous samples view project adsorption characterization of strontium on PAN/zeolite composite adsorbent. World J Nucl Sci Technol 1:6–12. https://doi.org/10.4236/wjnst.2011.11002

    Article  Google Scholar 

  33. Makoś P, Boczkaj G (2019) Deep eutectic solvents based highly efficient extractive desulfurization of fuels – eco-friendly approach. J Mol Liq 296:111916. https://doi.org/10.1016/j.molliq.2019.111916

    Article  Google Scholar 

  34. Infrared Spectroscopy Absorption Table - Chemistry LibreTexts

  35. Ahin S, Bayazit S, Bilgin M et al Investigation of formic acid separation from aqueous solution by reactive extraction: effects of extractant and diluent. https://doi.org/10.1021/je9006635

  36. Yang C, Cussler EL (2000) Reactive extraction of penicillin G in hollow-fiber and hollow-fiber fabric modules. Biotechnol Bioeng 69:66–73. https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<66::AID-BIT8>3.0.CO;2-I

    Article  Google Scholar 

  37. De BS, Wasewar KL, Dhongde VR et al (2018) Experimental and modeling of reactive separation of protocatechuic acid. Chem Eng Res Des 132:593–605. https://doi.org/10.1016/j.cherd.2018.01.054

    Article  Google Scholar 

  38. Rewatkar K, Shende DZ, Wasewar KL (2016) Effect of temperature on reactive extraction of Gallic acid using tri- n -butyl phosphate, tri- n -octylamine and Aliquat 336. J Chem Eng Data 61:3217–3224. https://doi.org/10.1021/acs.jced.6b00310

    Article  Google Scholar 

  39. Buchner N, Krumbein A, Rohn S, Kroh LW (2006) Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun Mass Spectrom 20:3229–3235. https://doi.org/10.1002/rcm.2720

    Article  Google Scholar 

  40. Athankar KK, Wasewar KL, Varma MN, Shende DZ (2016) Reactive extraction of gallic acid with tri-n-caprylylamine. New J Chem 40:2413–2417. https://doi.org/10.1039/c5nj03007b

    Article  Google Scholar 

  41. Lu X, Zhang D, He S et al (2017) Reactive extraction of europium(III) and neodymium(III) by carboxylic acid modified calixarene derivatives: equilibrium, thermodynamics and kinetics. Sep Purif Technol 188:250–259. https://doi.org/10.1016/j.seppur.2017.07.040

    Article  Google Scholar 

  42. Ahmad AL, Chan CY, Abd Shukor SR, Mashitah MD (2009) Adsorption kinetics and thermodynamics of β-carotene on silica-based adsorbent. Chem Eng J 148:378–384. https://doi.org/10.1016/J.CEJ.2008.09.011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selin Şahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurtulbaş, E., Pekel, A.G., Toprakçı, İ. et al. Hydrophobic carboxylic acid based deep eutectic solvent for the removal of diclofenac. Biomass Conv. Bioref. 12, 2219–2227 (2022). https://doi.org/10.1007/s13399-020-00721-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00721-1

Keywords

Navigation