Skip to main content

Advertisement

Log in

Multi-objective optimization of a municipal solid waste gasifier

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Municipal solid waste (MSW) is the largest waste stream around the world and has a great potential for syngas generation through gasification process. Many researchers have worked on biomass and coal gasification; however, a few of them have considered MSW as feedstock. The present study employs a combination of computational fluid dynamics (CFD) approach, response surface method (RSM), and genetic algorithm (GA) to optimize a MSW-driven gasifier with the simultaneous consideration of efficiency and environmental effects. This study is conducted for Rasht city which is located in the north of Iran and highly suffers from waste disposal problems. This work is to investigate the influence of major parameters on the performance of the gasifier and to find out the optimal set of design variables. The results illustrate that the efficiency of the gasifier is more influenced by the geometric parameters rather than equivalence ratio; however, the effects of equivalence ratio and geometrical parameters on total emission of pollutants are comparable. The efficiency and total emission of pollutants of the best trade-off design (or optimal design) are observed to be 32.2% and 4.8 ppm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area (m2) or pre-exponential factor or Empirical constant for reaction rate

B :

Empirical constant for reaction rate

α :

Absorption factor

C :

Molecular Concentration (kg mol m−3) or linear-anisotropic phase function coefficient

C D :

Coefficient of drag

C l :

Modeling constant for particle-eddy interaction time

C s, C :

vapor concentration at particle surface and in the bulk gas (kmol m−3).

C 1ε :

Turbulent constant

C 2ε :

Turbulent constant

C μ :

Turbulent constant

c p :

Specific heat (J kg−1 K−1)

D :

Dual mass transfer coefficient (m2 s−1)

d :

Particle diameter (m)

E :

Activation energy (J kmol−1)

F :

Particle body force (N kg−1)

f v, 0, f w, 0 :

Initial volatile fraction and Initial moisture fraction of fuel

G :

Incident radiation

G k :

Generation of turbulent kinetic energy

g :

Gravitational acceleration (m s−2)

∆H ° , H :

Heat of reaction (at 298 K and 1 atm)

HHV :

High heating value (J kg−1)

h :

Specific enthalpy of gas phase (J kg−1) or convective heat transfer coefficient (W m−2 K−1)

h fg :

Latent heat of moisture/volatile matters (J kg−1)

I :

Radiation intensity

J :

Mass diffusion flux

k :

Reaction rate constant or Turbulent kinetic energy (m2 s−2)

k c :

thermal conductivity of bulk gas (W m−1 K−1)

L :

Height of gasifier (m)

l :

Height of entrance (m)

l e :

Eddy length scale (m)

M w :

Molecular weight (kg mol−1)

m :

Mass (kg)

m p, o :

Initial mass of particle (kg)

\( \dot{m} \) :

Mass flow rate (kg s−1)

n :

Temperature exponent

P :

Pressure (Pa)

Pr:

Prandtl number

q r :

Radiation heat flux

\( \hat{R} \) :

Rate of reaction (kg m−3 s−1)

R :

Universal gas constant (J kmol K−1)

r :

Rate of reaction (kg m−3 s−1)

Re:

Reynolds number

S :

Source term or Sobol (sensitivity) indices

S r :

Net production rate of species (kmol m−3 s−1)

t :

Time (s)

t e :

Eddy life time (s)

t cross :

Eddy crossing time (s)

T :

Temperature (K)

T′:

Fluctuating temperature (K)

\( \overline{T^{\prime }} \) :

Mean temperature component (K)

u :

Velocity (m s−1)

u′:

Fluctuating velocity component (m s−1)

\( \overline{u^{\prime }} \) :

Mean velocity component (m s−1)

V. R :

Total variance

V :

Variance

v :

Velocity (m s−1)

\( {v}_r^{\prime } \) :

Reactant stoichiometric coefficient of reaction r

\( {v}_r^{\prime \prime } \) :

Product stoichiometric coefficient of reaction r

X :

Symbol denoting species or Mass fraction of solid particle

x :

Coordinate (m)

Y :

Mass fraction or Initial solid mass fraction

y :

Symbol denoting a data

μ :

viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

τ :

Shear stress (N m−2) or Particle relaxation time (s)

σ:

Stephen-Boltzmann coefficient or Turbulent prandtl number

ε :

Scatter factor or Turbulent dissipation rate (m2 s−3)

ζ :

Normally distributed random number

θ R :

Radiation temperature

δ ij :

Kronecker delta

η :

effectiveness factor

η :

Forward rate exponent

η ′′ :

Backward rate exponent

λ :

Thermal conductivity (W m−1 K−1)

atm :

Atmosphere

b :

Backward

c :

Conduction

D :

Drag

eq :

Equilibrium

f :

Forward

g :

Gas phase

h :

Heating

i :

Species i or Spatial coordinate or Initial

j :

Momentum or Spatial coordinate or Species j

k :

Turbulent kinetic energy

m :

Mass

p :

Particle phase or product

R :

Reactant

r :

Reaction

s :

Solid

t :

Turbulence

v :

Vapor

ε :

Turbulent dissipation rate

References

  1. Ramos A, Monteiro E, Rouboa A (2019) Numerical approaches and comprehensive models for gasification process: a review. Renew Sust Energ Rev 110:188–206. https://doi.org/10.1016/j.rser.2019.04.048

    Article  Google Scholar 

  2. Centeno F, Mahkamov K, Silva Lora EE, Andrade RV (2012) Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system. Renew Energy 37:97–108. https://doi.org/10.1016/j.renene.2011.06.008

    Article  Google Scholar 

  3. Ng RTL, Tay DHS, Azlina W, Ab W, Ghani K, Ng DKS (2013) Modelling and optimisation of biomass fluidised bed gasifier. Appl Therm Eng 61:98–105. https://doi.org/10.1016/j.applthermaleng.2013.03.048

    Article  Google Scholar 

  4. Zhang X, Li H, Liu L, Bai C, Wang S, Zeng J, Liu X, Li N, Zhang G (2018) Thermodynamic and economic analysis of biomass partial gasification process. Appl Therm Eng 129:410–420. https://doi.org/10.1016/j.applthermaleng.2017.10.069

    Article  Google Scholar 

  5. Diyoke C, Gao N, Aneke M, Wang M, Wu C (2018) Modelling of down-draft gasification of biomass—an integrated pyrolysis, combustion and reduction process. Appl Therm Eng 142:444–456. https://doi.org/10.1016/j.applthermaleng.2018.06.079

    Article  Google Scholar 

  6. Sharma AK (2008) Equilibrium and kinetic modeling of char reduction reactions in a downdraft biomass gasifier: a comparison. Sol Energy 82:918–928. https://doi.org/10.1016/j.solener.2008.03.004

    Article  Google Scholar 

  7. Giltrap DL, McKibbin R, Barnes GRG (2003) A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol Energy 74:85–91. https://doi.org/10.1016/S0038-092X(03)00091-4

    Article  Google Scholar 

  8. Roy PC, Datta A, Chakraborty N (2009) Modelling of a downdraft biomass gasifier with finite rate kinetics in the reduction zone. Int J Energy Res 31:135–147. https://doi.org/10.1002/er.1517

    Article  Google Scholar 

  9. Couto N, Monteiro E, Silva V, Rouboa A (2016) Hydrogen-rich gas from gasification of Portuguese municipal solid wastes. Int J Hydrog Energy 41:10619–10630. https://doi.org/10.1016/j.ijhydene.2016.04.091

    Article  Google Scholar 

  10. Couto N, Silva V, Monteiro E, Teixeira S, Chacartegui R, Bouziane K, Brito PSD, Rouboa A (2015) Numerical and experimental analysis of municipal solid wastes gasification process. Appl Therm Eng 78:185–195. https://doi.org/10.1016/j.applthermaleng.2014.12.036

    Article  Google Scholar 

  11. Couto ND, Silva VB, Monteiro E, Rouboa A (2015) Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices. Energy. 93:864–873. https://doi.org/10.1016/j.energy.2015.09.064

    Article  Google Scholar 

  12. Chen W, Chen C, Hung C, Shen C, Hsu H (2013) A comparison of gasification phenomena among raw biomass , torrefied biomass and coal in an entrained-flow reactor. Appl Energy 112:421–430. https://doi.org/10.1016/j.apenergy.2013.01.034

    Article  Google Scholar 

  13. Zhong W, Xie J, Shao Y, Liu X, Jin B (2015) Three-dimensional modeling of olive cake combustion in CFB. Appl Therm Eng 88:322–333. https://doi.org/10.1016/j.applthermaleng.2014.10.086

    Article  Google Scholar 

  14. We G, Klimanek A, Adamczyk W, Katelbach-woz A, Szle A (2015) Towards a hybrid Eulerian–Lagrangian CFD modeling of coal gasification in a circulating fluidized bed reactor. Fuel. 152:131–137. https://doi.org/10.1016/j.fuel.2014.10.058

    Article  Google Scholar 

  15. Gerber S, Behrendt F, Oevermann M (2004) A comparative study of euler-euler and euler-lagrange modelling of wood gasification in a dense fluidized bed, 20th Int. Conf. Fluidaized Bed Combust

  16. Silaen A, Wang T (2010) Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier. Int J Heat Mass Transf 53:2074–2091. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.047

    Article  MATH  Google Scholar 

  17. Gao X, Zhang Y, Li B, Yu X (2016) Model development for biomass gasification in an entrained flow gasifier using intrinsic reaction rate submodel. Energy Convers Manag 108:120–131. https://doi.org/10.1016/j.enconman.2015.10.070

    Article  Google Scholar 

  18. Chen L, Ghoniem AF (2013) Development of a three-dimensional computational slag flow model for coal combustion and gasification. Fuel. 113:357–366. https://doi.org/10.1016/j.fuel.2013.05.103

    Article  Google Scholar 

  19. Sethuraman S, Van Huynh C, Kong SC (2011) Producer gas composition and NOx emissions from a pilot-scale biomass gasification and combustion system using feedstock with controlled nitrogen content. Energy Fuel 25:813–822. https://doi.org/10.1021/ef101352j

    Article  Google Scholar 

  20. Zhang B, Ren Z, Shi S, Yan S, Fang F (2016) Numerical analysis of gasification and emission characteristics of a two-stage entrained flow gasifier. Chem Eng Sci 152:227–238. https://doi.org/10.1016/j.ces.2016.06.021

    Article  Google Scholar 

  21. Hämäläinen JP, Aho MJ (1996) Conversion of fuel nitrogen through HCN and NH3to nitrogen oxides at elevated pressure. Fuel. 75:1377–1386. https://doi.org/10.1016/0016-2361(96)00100-7

    Article  Google Scholar 

  22. Stadler H, Toporov D, Förster M, Kneer R (2009) On the influence of the char gasification reactions on NO formation in flameless coal combustion. Combust Flame 156:1755–1763. https://doi.org/10.1016/j.combustflame.2009.06.006

    Article  Google Scholar 

  23. Prasertcharoensuk P, Hernandez DA, Bull SJ, Phan AN (2018) Optimisation of a throat downdraft gasifier for hydrogen production. Biomass Bioenergy 116:216–226. https://doi.org/10.1016/j.biombioe.2018.06.019

    Article  Google Scholar 

  24. Uebel K, Rößger P, Prüfert U, Richter A, Meyer B (2016) A new CO conversion quench reactor design. Fuel Process Technol 148:198–208. https://doi.org/10.1016/j.fuproc.2016.02.022

    Article  Google Scholar 

  25. Jarungthammachote S, Dutta A (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy. 32:1660–1669. https://doi.org/10.1016/j.energy.2007.01.010

    Article  Google Scholar 

  26. Barman NS, Ghosh S, De S (2012) Gasification of biomass in a fixed bed downdraft gasifier—a realistic model including tar. Bioresour Technol 107:505–511. https://doi.org/10.1016/j.biortech.2011.12.124

    Article  Google Scholar 

  27. Couto ND, Silva VB, Rouboa A (2016) Assessment on steam gasification of municipal solid waste against biomass substrates. Energy Convers Manag 124:92–103. https://doi.org/10.1016/j.enconman.2016.06.077

    Article  Google Scholar 

  28. Meenaroch P, Kerdsuwan S, Laohalidanond K (2015) Development of kinetics models in each zone of a 10 kg / hr downdraft Gasifier using computational fluid dynamics. Elsevier B.V. https://doi.org/10.1016/j.egypro.2015.11.485

  29. ANSYS FLUENT 16.0 Theory Guide, 2014

  30. Crowe CT, Sharma MP, Stock DE The particle-source-in cell (PSI-CELL) model for gas-droplet flows. J Fluids Eng 99(1977):325–332

  31. Chen C, Hung C, Chen W (2012) Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Appl Energy 100:218–228. https://doi.org/10.1016/j.apenergy.2012.05.013

    Article  Google Scholar 

  32. Magnussen BF, Hjertager BH (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Sixt Symp Combust 16:719–729

    Article  Google Scholar 

  33. Luan Y, Chyou Y, Wang T (2013) Numerical analysis of gasification performance via finite-rate model in a cross-type two-stage gasifier. Int J Heat Mass Transf 57:558–566. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.026

    Article  Google Scholar 

  34. Zhou W, Zhao C, Duan L, Liu D, Chen X (2011) CFD modeling of oxy-coal combustion in circulating fluidized bed. Int J Greenhouse Gas Control 5:1489–1497. https://doi.org/10.1016/j.ijggc.2011.08.006

    Article  Google Scholar 

  35. Zhou W, Zhao CS, Duan LB, Qu CR, Chen XP (2011) Two-dimensional computational fluid dynamics simulation of coal combustion in a circulating fluidized bed combustor. 166:306–314. https://doi.org/10.1016/j.cej.2010.09.048

  36. Yu L, Lu J, Zhang X (2007) Numerical simulation of the bubbling fluidized bed coal gasification by the kinetic theory of granular flow. KTGF 86:722–734. https://doi.org/10.1016/j.fuel.2006.09.008

    Article  Google Scholar 

  37. Wang X, Jin B, Zhang Y, Zhang Y, Liu X (2013) three dimensional modeling of a coal-fired chemical looping combustion process in the circulating fluidized bed fuel reactor. Energy Fuels 27:2173–2184

    Article  Google Scholar 

  38. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech:193–208

  39. Elsayed K, Lacor C (2012) Modeling and Pareto optimization of gas cyclone separator performance using RBF type artificial neural networks and genetic algorithms. Powder Technol 217:84–99. https://doi.org/10.1016/j.powtec.2011.10.015

    Article  Google Scholar 

  40. Elghobashi S (1991) Particle-laden turbulent flows: direct simulation and closure models. Appl Sci Res 48:301–314. https://doi.org/10.1007/BF02008202

    Article  MATH  Google Scholar 

  41. Smith IW (1982) The combustion rates of coal chars: a review, 19th Symp. Combust 1045–1065

  42. Ranz JWE, Marshall WR (1952) Evaporation from drops, part I and part II. Chem Eng Prog 48(4):173–180

    Google Scholar 

  43. Ranz JWE, Marshall WR (1952) Vaporation from drops, part I. Chem Eng Prog 48(3):141–146

    Google Scholar 

  44. Channiwala SA, Parikh PP (2002) A inified correlation for estimating HHV of solid,liquid and gaseous fuels. Fuel 81:1051–1063 file://c/Documents and Settings/Administrador/Escritorio/Rogelio/2842–1-s2.0-S0016236101001314-main.pdf

    Article  Google Scholar 

  45. Altafini CR, Wander PR, Barreto RM (2003) Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers Manag 44:2763–2777. https://doi.org/10.1016/S0196-8904(03)00025-6

    Article  Google Scholar 

  46. Couto N, Silva V, Monteiro E, Rouboa A (2017) Exergy analysis of Portuguese municipal solid waste treatment via steam gasification. Energy Convers Manag 134:235–246. https://doi.org/10.1016/j.enconman.2016.12.040

    Article  Google Scholar 

  47. Shayan E, Zare V, Mirzaee I (2018) Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents. Energy Convers Manag 159:30–41. https://doi.org/10.1016/j.enconman.2017.12.096

    Article  Google Scholar 

  48. Hill SC, Smoot LD (2000) Modeling of nitrogen oxides formation and destruction in combustion systems. Prog Energy Combust Sci 26:417–458

    Article  Google Scholar 

  49. Nipattamakul N, Patumsawad S, Kerdsuwan S (2007) An experimental investigation of a 15 kg / hr downdraft biomass Gasifier for power generation. Int Conf Eng Environ:40–42

  50. Moghadam MRA, Mokhtarani N, Mokhtarani B (2009) Municipal solid waste management in Rasht City , Iran. Waste Manag 29:485–489. https://doi.org/10.1016/j.wasman.2008.02.029

    Article  Google Scholar 

  51. Tchobangolous T (1993) Vigil, integrated solid waste management: engineering principles and managment issues. McGraw-Hill Publishing Co., New York

    Google Scholar 

  52. Mezhericher M, Brosh T, Levy A (2011) Modeling of particle pneumatic conveying using DEM and DPM methods. Part Sci Technol 29:197–208. https://doi.org/10.1080/02726351003792914

    Article  Google Scholar 

  53. Fonseca CM, Fleming PJ (1993) Genetic algorithms for multiobjective optimization: formulation, discussion and generalization, Proc. 5th Int. Conf. Genet. Algorithms. 1 416–423

  54. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  55. Rößger P, Richter A (2018) Performance of different optimization concepts for reactive flow systems based on combined CFD and response surface methods. Comput Chem Eng 108:232–239. https://doi.org/10.1016/j.compchemeng.2017.09.008

    Article  Google Scholar 

  56. Mara TA, Tarantola S (2008) Application of global sensitivity analysis of model output to building thermal simulations. Build Simul 1:290–302. https://doi.org/10.1007/s12273-008-8129-5

    Article  Google Scholar 

  57. Touzani S, Busby D (2013) Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes. Reliab Eng Syst Saf 112:67–81. https://doi.org/10.1016/j.ress.2012.11.008

    Article  Google Scholar 

  58. modeFRONTIER 2016 Tutorial, ESTECO (2016)

  59. Shabani M, Mahmoudimehr J (2019) Influence of climatological data records on design of a standalone hybrid PV-hydroelectric power system. Renew Energy 141:181–194. https://doi.org/10.1016/j.renene.2019.03.145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Atashkari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahari, A., Atashkari, K. & Mahmoudimehr, J. Multi-objective optimization of a municipal solid waste gasifier. Biomass Conv. Bioref. 11, 1703–1718 (2021). https://doi.org/10.1007/s13399-019-00592-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00592-1

Keywords

Navigation