Skip to main content

Advertisement

Log in

Combined removal of particulate matter and nitrogen oxides from the exhaust gas of small-scale biomass combustion

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The utilization of various solid biofuels in combustion plants often requires the application of secondary emission reduction measures in order to meet legal requirements. Since common multi-stage exhaust cleaning methods are too expensive for the application in decentral biomass combustion, new approaches have to be investigated which can be applied economically in small- and medium-sized plants. The combined removal of particulate and gaseous emissions in one unit can save investment and operation costs. In this context, a method for simultaneous reduction of particulate matter (PM) and nitrogen oxides (NOX) was developed and tested. The investigations focused on the alignment of the system components and the determination of optimal operating parameters for use in decentralized biomass furnaces. Experiments with wood chips and different non-woody biomass pellets at a 120-kW pilot plant showed significant reduction of PM and NOX. There is still a need for optimization with regard to the NH3 slip and the degree of particle separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zeldovich J (1946) The oxidation of nitrogen in combustion and explosions. Acta Physiochimica 21:577

    Google Scholar 

  2. Kaltschmitt M, Hartmann H (2009) Energie aus Biomasse. Grundlagen, Techniken und Verfahren, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  3. Joos F (2006) Technische Verbrennung. Springer, Berlin

    Google Scholar 

  4. Nussbaumer T (1997) Verbrennung und Vergasung von Energiegras und Feldholz. Bundesamt für Energiewirtschaft, Bern

    Google Scholar 

  5. Launhardt T (2002) Umweltrelevante Einflüsse bei der thermischen Nutzung fester Biomasse in Kleinanlagen, Dissertation, Technische Universität München

  6. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  Google Scholar 

  7. Olave RJ, Forbes EGA, Johnston CR, Relf J (2017) Particulate and gaseous emissions from different wood fuels during combustion in a small-scale biomass heating system. Atmos Environ 157:49–58

    Article  Google Scholar 

  8. Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sust Energ Rev 15:2262–2289

    Article  Google Scholar 

  9. Loo SV, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, London

    Google Scholar 

  10. DIRECTIVE (EU) 2001/81 (2001) Directive on national emission ceilings for certain atmospheric pollutants

  11. DIRECTIVE (EU) 2015/2193 (2015) Directive on the limitation of emissions of certain pollutants into the air from medium combustion plants

  12. TA Luft 2002 (2002) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft) Vom 24. Juli 2002, Inkraftgetreten am 1.10.2002, Carl Heymanns Verlag

  13. Draft of TA Luft (2016) Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft), Federal Ministry for the Environment, Nature Conservation, Construction and Nuclear Safety

  14. Beckmann M (2011) Beschreibung unterschiedlicher Techniken und deren Entwicklungspotentiale zur Minderung von Stickstoffoxiden im Abgas von Abfallverbrennungsanlagen und Ersatzbrennstoff-Kraftwerken hinsichtlich Leistungsfähigkeit. Kosten und Energieverbrauch, Umweltbundesamt, Dessau-Rosslau

    Google Scholar 

  15. García-Bordejé E, Pinilla JL, Lázaro MJ, Moliner R, Fierro JLG (2005) Role of sulphates on the mechanism of NH3-SCR of NO at low temperatures over presulphated vanadium supported on carbon-coated monoliths. J Catal 233:166–175

    Article  Google Scholar 

  16. Bai H, Yu Lee T (2016) Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: a review. Environ Sci 3(2):261–289

    Google Scholar 

  17. Heck RM, Farrauto RJ, Gulati ST (2009) Catalytic air pollution control: commercial technology. Wiley, New Jersey

    Book  Google Scholar 

  18. Yang S, Xiong S, Liao Y, Xiao X, Qi F, Peng Y, Fu Y, Shan W, Li J (2014) Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel. Environ Sci Technol 48:10354–10362

    Article  Google Scholar 

  19. Cheng X, Bi XT (2014) A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology 16:1–18

    Article  Google Scholar 

  20. Liu Z, Woo SI (2006) Recent advances in catalytic DeNOX science and technology. Catal Rev 48(1):43–89

    Article  Google Scholar 

  21. Kim YJ, Kwon HJ, Heo I, Nam I-S, Cho BK, Choung JW, Cha M-S, Yeo GK (2012) Mn–Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust. Appl Catal B Environ 126:9–21

    Article  Google Scholar 

  22. Yao X, Kong T, Yu S, Li L, Yang F, Dong L (2017) Influence of different supports on the physicochemical properties and denitration performance of the supported Mn-based catalysts for NH3-SCR at low temperature. Appl Surf Sci 402:208–217

    Article  Google Scholar 

  23. Liu C, Shi J-W, Gao C, Niu C (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A Gen 522:54–69

    Article  Google Scholar 

  24. Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  Google Scholar 

  25. Shen B, Chen J, Yue S, Li G (2015) A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR. Fuel 156:47–53

    Article  Google Scholar 

  26. Jo YB, Cha JS, Ko JH, Shin MC, Park SH, Jeon J-K, Kim S-S, Park Y-K (2011) NH3 selective catalytic reduction (SCR) of nitrogen oxides (NOx) over activated sewage sludge char. Korean J Chem Eng 28:106–113

    Article  Google Scholar 

  27. ISO 22241-1:2006 (2006) Diesel engines—NOx reduction agent AUS 32—part 1: quality requirements

  28. Johannessen T, Schmidt H, Svagin J, Johansen J, Oechsle J, Bradley R (2008) Ammonia storage and delivery systems for automotive NOx aftertreatment. SAE Technical Paper, Warrendale

    Google Scholar 

  29. Liu F, He H, Zhang C, Shan W, Shi X (2011) Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. Catal Today 175:18–25

    Article  Google Scholar 

  30. Zuo J, Chen Z, Wang F, Yu Y, Wang L, Li X (2014) Low-temperature selective catalytic reduction of NOx with NH3 over novel Mn–Zr mixed oxide catalysts. Ind Eng Chem Res 53:2647–2655

    Article  Google Scholar 

  31. Shen B, Liu T, Zhao N, Yang X, Deng L (2010) Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J Environ Sci China 22:1447–1454

    Article  Google Scholar 

  32. Magnusson M, Fridell E, Ingelsten HH (2012) The influence of sulfur dioxide and water on the performance of a marine SCR catalyst. Appl Catal B Environ 111:20–26

    Article  Google Scholar 

  33. Zhao K, Han W, Lu G, Lu J, Tang Z, Zhen X (2016) Promotion of redox and stability features of doped Ce–W–Ti for NH3-SCR reaction over a wide temperature range. Appl Surf Sci 379:316–322

    Article  Google Scholar 

  34. Fang N, Guo J, Shu S, Luo H, Chu Y, Li J (2017) Enhancement of low-temperature activity and sulfur resistance of Fe0.3Mn0.5Zr0.2 catalyst for NO removal by NH3-SCR. Chem Eng J 325:114–123

    Article  Google Scholar 

  35. Ness SR, Dunham GE, Weber GF, Ludlow DK (1995) SCR catalyst-coated fabric filters for simultaneous NOx and high-temperature particulate control. Environ Prog 14:69–74

    Article  Google Scholar 

  36. Park Y-O, Lee K-W, Rhee Y-W (2009) Removal characteristics of nitrogen oxide of high temperature catalytic filters for simultaneous removal of fine particulate and NOx. J Ind Eng Chem 15:36–39

    Article  Google Scholar 

  37. Hackel PM (2007) Katalytische Umsetzung von Rauchgaskomponenten in imprägnierten kornkeramischen Filterelementen. Karlsruhe, Experimentelle und rechnerische Untersuchungen, Universitätsverlag Karlsruhe

    Google Scholar 

  38. Heidenreich S, Nacken M, Hackel M, Schaub G (2008) Catalytic filter elements for combined particle separation and nitrogen oxides removal from gas streams. Powder Technol 180:86–90

    Article  Google Scholar 

  39. Plinke M, Sassa R, Mortimer W, Brinckman G (1997) Catalytic filter material and method of making same, WO/1997/006877

  40. Guan B, Zhan R, Lin H, Huang Z (2014) Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl Therm Eng 66:395–414

    Article  Google Scholar 

  41. EN 303-5:2012 (2012) Heating boilers—part 5: heating boilers for solid fuels, manually and automatically stoked, nominal heat output of up to 500 kW—terminology, requirements, testing and marking

  42. Strauß K (2013) Kraftwerkstechnik: zur Nutzung fossiler, regenerativer und nuklearer Energiequellen. Springer, Berlin

    Google Scholar 

  43. Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: chemical and mechanistic aspects. Catal Today 107–108:139–148

    Article  Google Scholar 

Download references

Acknowledgements

This research work was kindly supported by the German federal ministry for economic affairs and energy. The exhaust gas cleaning system was developed in collaboration with two medium-sized mechanical engineering companies (Dr. Weigel Anlagenbau GmbH and ITB Industrietechnik Barleben GmbH) and the IFF Fraunhofer Research Center from Magdeburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. König.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, M., Eisinger, K., Hartmann, I. et al. Combined removal of particulate matter and nitrogen oxides from the exhaust gas of small-scale biomass combustion. Biomass Conv. Bioref. 9, 201–212 (2019). https://doi.org/10.1007/s13399-018-0303-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-018-0303-0

Keywords

Navigation