Skip to main content
Log in

Weakly web-compact Banach spaces C(X), and \(Lip_0(M)\), \(\mathcal {F}(M)\) over metric spaces M

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The class of web-compact spaces (in sense of Orihuela), which encompasses a number of spaces, like Lindelöf \(\Sigma \)-spaces (called also countably determined), Quasi-Suslin spaces, separable spaces, etc., applies to distinguish a class of weakly web-compact Banach spaces E whose dual unit ball is weak\(^{*}\)-sequentially compact, consequently Banach spaces without quotients isomorphic to \(\ell _{\infty }.\) We prove however that for a Banach space E the space \(E_w\) (i.e. E with the weak topology) is web-compact if and only if \(E_w\) is a Lindelöf \(\Sigma \)-space if and only if \(E_w\) contains a web-compact total subset. Consequently, for compact X the space \(C(X)_w\) is web-compact if and only if X is Gul’ko compact if and only if \(C(X)_w\) is a Lindelöf \(\Sigma \)-space if and only if \(C_p(X)\) contains a web-compact total subset. If X is compact and \(C(X)_w\) is web-compact, then \(C_p(X)\) contains a complemented copy of the space \((c_{0})_p=\{(x_{n})\in \mathbb R^{\omega }: x_{n}\rightarrow 0\}\) with the topology of \(\mathbb {R}^{\omega }\) but does not admit quotients isomorphic to \((\ell _{\infty })_{p}=\{(x_{n})\in \mathbb R^{\omega }: \sup _n|x_{n}|<\infty \}\). We characterize weakly web-compact Banach spaces \(Lip_0(M)\) of Lipschitz functions on metric spaces M and their predual \(\mathcal {F}(M)\). In fact, \(Lip_0(M)_w\) is web-compact if and only if M is separable. Illustrating examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arkhangel’ski, A.V.: Topological Function Spaces. Kluwer, Dordrecht (1992)

    Book  Google Scholar 

  2. Alster, K.: Some remarks on Eberlein compacts. Fund. Math. 104, 43–46 (1979)

    Article  MathSciNet  Google Scholar 

  3. Banakh, T., Ka̧kol, J., Śliwa, W.: Metrizable quotients of \(C_p\)-spaces. Topol. Appl. 249, 95–102 (2018)

  4. Banakh, T., Ka̧kol, J. ,Śliwa, W. : Josefson–Nissenzweig property for \(C_{p}\)-spaces. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 113, 3015–3030 (2019)

  5. Cascales, B., Orihuela, J.: On pointwise and weak compactness in spaces of continuous functions. Bull. Soc. Math. Belg. 40, 331–352 (1988)

    MathSciNet  Google Scholar 

  6. Cúth, M., Doucha, M., Wojtaszczyk, P.: On the structure of Lipschitz-free spaces. Proc. Am. Math. Soc. 144, 3833–3846 (2016)

    Article  MathSciNet  Google Scholar 

  7. Corson, H.H.: The weak topology of a Banach space. Trans. Am. Math. Soc. 101, 1–15 (1961)

    Article  MathSciNet  Google Scholar 

  8. Dancer, E.N., Sims, B.: Weak star separability. Bull. Aust. Math. Soc. 2, 253–257 (1979)

    Article  MathSciNet  Google Scholar 

  9. Diestel, J.: Sequences and Series in Banach Spaces. Springer, New York (1984)

    Book  Google Scholar 

  10. Diestel, J.: Diestel Vector and Operator Valued Measures and Applications. Grothendieck spaces and vector measures, pp. 97–108. Academic Press, London (1973)

    Book  Google Scholar 

  11. Engelking, R.: General Topology. Heldermann, Berlin (1989)

    Google Scholar 

  12. Fabian, M.: Gâteaux differentiability of convex functions and topology. In: Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997)

  13. Fabian, M., Habala, P., Hajek, P., Montesinos, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. CMS Books Mathematics/Ouvrages Mathematics SMC (2001)

  14. Ferrando, J.C., Ka̧kol, J., Saxon S. A.: The dual of the locally convex space \(C_{p}\left( X\right) \). Funct. Approx. Comment. Math. 50, 389–399 (2014)

  15. Ferrando, J. C., Ka̧kol, J., Leiderman, A., Saxon, S. A.: Distinguished \(C_p(X)\) spaces. Rev. R. Acad. Cienc. Exactas F’ís. Nat. Ser. A-Mat. RACSAM 115(1), 27 (2021)

  16. Ferrando, J.C., Ka̧kol, J.: Metrizable bounded sets in \(C(X)\) Spaces and distinguished \(C_p(X)\) Spaces. J. Convex Anal. 26, 1337–1346 (2019)

  17. Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, New York (1976)

    Google Scholar 

  18. González, M., Kania, T.: Grothendieck spaces: the landscape and perspectives. Jpn. J. Math. 16, 247–313 (2021)

    Article  MathSciNet  Google Scholar 

  19. Gruenhage, G.: A note on Gul’ko compact spaces. Proc. Am. Math. Soc. 100, 371–376 (1987)

    Google Scholar 

  20. Grothendieck, A.: Sur les applications linéaires faiblement compactnes d’espaces du type \(C(K)\). Can. J. Math. 5, 129–173 (1953)

    Article  Google Scholar 

  21. Isbell, J.R., Semadeni, Z.: Projection Constants and Spaces of Continuous Functions. Trans. Amer. Math. Soc. 107, 38–48 (1963)

    Article  MathSciNet  Google Scholar 

  22. Hájek, P., Novotný, M.: Some remarks on the structure of Lipschitz-free spaces. Bull Belg. Math. Soc. Simon Stevin 24, 283–304 (2016)

    MathSciNet  Google Scholar 

  23. Haydon, R.: Three examples in the theory of spaces of continuous functions. C. R. Acad. Sci. Sor. 276, 685–687 (1973)

    Google Scholar 

  24. Haydon, R.: A non-reflexive Grothendieck space that does not contain \(\ell _\infty \). Israel J. Math. 40, 65–73 (1981)

    Article  MathSciNet  Google Scholar 

  25. Haydon, R., Levy, M., Odell, E.: On sequences without weak\(^{*}\) convergent convex block subsequences. Proc. Am. Math. Soc. 100, 94–98 (1987)

    MathSciNet  Google Scholar 

  26. Hrušák, M., Tamariz-Mascarúa, Á., Tkachenko, M. (eds.): A Survey of Classic and New Results with Open Problems. Pseudocompact topological spaces, Springer, New York (2018)

    Google Scholar 

  27. Juhasz, I., van Mill, J.: Countably compact spaces all countable subsets of which are scattered. Comm. Math. Univ. Carolinae 22, 851–855 (1981)

    MathSciNet  Google Scholar 

  28. Kalton, N.J.: Lipschitz and uniform embeddings into \(\ell _{\infty }\). Fund. Math. 212, 53–69 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ka̧kol, J., Kubiś, W., Lopez-Pellicer, M.: Descriptive Topology in Selected Topics of Functional Analysis, Developments in Mathematics. Springer, New York (2011)

  30. Ka̧kol, J., Moltó, A.: Witnessing the lack of the Grothendieck property in \(C(K)\)-spaces via convergent sequences. Rev. R. Acad. Cienc. Exactas F’is. Nat. Ser. A Mat. RACSAM 114, 179 (2020)

  31. Ka̧kol, J., Moltó, A., Śliwa, W.: On subspaces of spaces \(C_p(X)\) isomorphic to spaces \(c_0\) and \(\ell _{q}\) with the topology induced from \(\mathbb{R}^{\mathbb{N}}\). Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 154 (2023)

  32. Ka̧kol, J., Sobota, S., Zdomskyy, L.: Grothendieck \(C(K)\)-spaces and the Josefson–Nissenzweig theorem. Fund. Math. 263 , 105–131 (2023)

  33. Ka̧kol, J., Marciszewski, W., Sobota, D., Zdomskyy, L.: On complemented copies of the space \(c_0\) in spaces \(C_p(X\times Y)\). Israel J. Math. 250 , 139–177 (2022)

  34. Ka̧kol, J., Leiderman, A.: A characterization of \(X\) for which spaces \(C_p(X)\) are distinguished and its applications. Proc. Am. Math. Soc. Ser. B 8 , 86–99 (2021)

  35. Ka̧kol, J., Kurka, O., Leiderman, A.: Some classes of topological spaces extending the class of \(\Delta \)-spaces. Proc. Am. Math. Soc. (to appear)

  36. Ka̧kol, J., Leiderman, A.: Basic properties of \(X\) for which the space \(C_p(X)\) is distinguished. Proc. Am. Math. Soc. Ser. B 8 , 267–280 (2021)

  37. Knight, R.W.: \(\Delta \)-sets. Trans. Am. Math. Soc. 339, 45–60 (1993)

    Google Scholar 

  38. Koszmider, P., Shelah, S.: Independent families in Boolean algebras with some separation properties. Algebra Univ. 69, 305–312 (2013)

    Article  MathSciNet  Google Scholar 

  39. Martinez-Cervantes, G.: Banach spaces with weak\(^{*}\)-sequential dual ball. Proc. Am. Math. Soc. 146, 1825–1832 (2018)

    Article  MathSciNet  Google Scholar 

  40. McCoy, R.A., Ntantu, I.: Topological Properties of Spaces of Continuous Functions. Springer, Berlin (1980)

    Google Scholar 

  41. Mercourakis, S.: On weakly countably determined Banach spaces. Trans. Am. Math. Soc. 300, 307–327 (1987)

    Article  MathSciNet  Google Scholar 

  42. Moll, S., S\(\acute{\rm a}\)nchez Ruiz, L. M.: A note on a theorem of Talagrand. Topol. Appl. 153 , 2905–2907 (2006)

  43. Orihuela, J.: Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 36, 143–152 (1987)

    Article  MathSciNet  Google Scholar 

  44. Orihuela, J., Schahermayer, W., Valdivia, M.: Every Radon Nikodym Corson compact is Eberlein compact. Stud. Math. 98, 157–174 (1991)

    Article  MathSciNet  Google Scholar 

  45. Plebanek, G.: On Grothendieck Spaces. Unpublished Note (2005)

  46. Plichko, A.: Three sequential properties of dual Banach spaces in the weak\(^{*}\) topology. Topol. Appl. 190 , 93–98 (2015)

  47. Räbiger, F.: Beiträge zur Strukturtheorie der Grothendieck-Räume. In: Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, vol. 85. Springer, New York (1985)

  48. Schlumprecht, T.: Limitierte Mengen in Banachrümen PhD Mn̈chen (1988)

  49. Talagrand, M.: Un nouveau \(C(K)\) qui possède la propriété de Grothendieck. Israel J. Math. 37, 181–191 (1980)

    Article  MathSciNet  Google Scholar 

  50. Talagrand, M.: Espaces de Banach faiblement \(K\)-analytiques. Ann. Math. 110, 407–438 (1979)

    Article  MathSciNet  Google Scholar 

  51. Tkachuk, V.V.: Lindelöf \(\Sigma \)-spaces: an omnipresent class. RACSAM 104, 221–244 (2010)

    Article  MathSciNet  Google Scholar 

  52. Tkachuk, V.V.: Compactness in Function Spaces. A \(C_p\)-theory problem book, Springer, Cham (2015)

    Google Scholar 

  53. Weaver, N.: Lipschitz Algebras. World Scientific Publishing, Hackensack (2018)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Ka̧kol.

Additional information

To the memory of Professor Lech Drewnowski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We thank Professor Arkady Leiderman for suggesting [2, IV.2.4] in the proof of Theorem 3.5, and Professor Juan Carlos Ferrando for additional comments and suggestions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ka̧kol, J. Weakly web-compact Banach spaces C(X), and \(Lip_0(M)\), \(\mathcal {F}(M)\) over metric spaces M. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 118, 73 (2024). https://doi.org/10.1007/s13398-024-01567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-024-01567-2

Keywords

Mathematics Subject Classification

Navigation