Skip to main content
Log in

Continuous global optimization on fractals through \(\alpha \)-dense curves

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In the present paper we propose a method to approximate, under suitable conditions, the global minimum of a continuous function which is defined in a compact metric space and the its global minimum is attained on a fractal subset of such compact metric space. For this goal, we construct a new class of \(\alpha \)-dense curves, which allow us to approximate, with arbitrarily small error, the solution of the given optimization problem by the solutions of certain single variable optimization problems. Also, by using the \(\alpha \)-dense curves and an algorithm due to J. Calvin, we introduce a new method to approximate the global minimum of a several variables continuous functions on a densifiable set. We illustrate our results with some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The author declares that the data of Tables 1 and 2 of this paper are available within such tables and were generated by a software. No external repositories are available.

References

  1. Barnsley, M.F.: Fractals everywhere. Academic Press Professional, Boston (1993)

    MATH  Google Scholar 

  2. Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory 57(1), 14–34 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M.F., Vince, A.: The chaos game on a general iterated function system. Ergodic Theory Dyn. Syst. 31(4), 1073–1079 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.E.: Adaptive control processes. Princeton University Press, Princeton (1961)

    Book  MATH  Google Scholar 

  5. Bouboulis, P., Dalla, L.: A general construction of fractal interpolation functions on grids of \(\mathbb{R} ^{n}\). Eur. J. Appl. Math. 18(4), 449–476 (2007)

    Article  MATH  Google Scholar 

  6. Calvin, J.M.: A one-dimensional optimization algorithm and its convergence rate under the Wiener measure. J. Complex. 17(2), 306–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cherruault, Y., Mora, G.: Optimisation Globale. Théorie des Courbes \(\alpha \)-denses. Económica, Paris (2005)

  8. Hardin, D.P., Massopust, P.R.: Fractal interpolation functions from \(\mathbb{R} ^{n}\longrightarrow \mathbb{R} ^{m}\) and their projections. Z. Anal. Anw. 12, 535–548 (1993)

    Article  MATH  Google Scholar 

  9. García, G.: Approximating the attractor set of iterated function systems of order \(m\) by \(\alpha \)-dense curves. Mediterr. J. Math. 17(5) (2020)

  10. García, G.: Approximating the attractor set of countable iterated function systems by \(\alpha \)-dense curves. Mediterr. J. Math. 14(67) (2017)

  11. García, G.: Interpolation of bounded sequences by \(\alpha \)-dense curves. J. Interpolat. Approx. Sci. Comput. 2017(1), 1–9 (2017)

    MathSciNet  Google Scholar 

  12. García, G., Mora, G.: Approximating multiple integrals of continuous functions by \(\delta \)-uniform curves. Ann. Univ. Ferrara Sez. VII Sci. Mat. 67(1), 59–71 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. J. Math. 30, 713–747 (1981)

  14. Imdad, M., Alfaqih, W.M., Khan, I.A.: Weak \(\theta \)-contractions and some fixed point results with applications to fractal theory. Adv. Differ. Equ. 2018, 439 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lera, D., Sergeyev, Ya.D.: Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Hölder constants. Commun. Nonlinear Sci. Numer. Simul. 23(1–3), 328–342 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mandelbrot, B.: The fractal geometry of nature. W. H. Freeman and Co., New York (1982)

    MATH  Google Scholar 

  17. Miculescu, R., Mihail, A., Urziceanu, S.: A new algorithm that generates the image of the attractor of a generalized iterated function system. Numer. Algorithms (2019). https://doi.org/10.1007/s11075-019-00730-w

    Article  MATH  Google Scholar 

  18. Mihail, A., Miculescu, R.: Applications of fixed point theorems in the theory of generalized IFS. Fixed Point Theory Appl. 2008, 11 (2008) (Article ID 312876)

  19. Mihail, A., Miculescu, R.: Generalized IFSs on noncompact spaces. Fixed Point Theory Appl. 2010, 11 (2010) (Article ID 584215)

  20. Mora, G., Mira, J.A.: Alpha-dense curves in infinite dimensional spaces. Int. J. Pure Appl. Math. 5(4), 437–449 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Mora, G.: The Peano curves as limit of \(\alpha \)-dense curves. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 9(1), 23–28 (2005)

  22. Mora, G.: Minimizing multivariable functions by minimization-preserving operators. Mediterr. J. Math. 2(3), 315–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mora, G., Cherruault, Y.: Characterization and generation of \(\alpha \)-dense curves. Comput. Math. Appl. 33(9), 83–91 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Mora, G., Redtwitz, D.A.: Densifiable metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 105(1), 71–83 (2011)

  25. Pacurar, C.M.: A countable fractal interpolation scheme involving Rakotch contractions. Results Math. 76(161) (2021)

  26. Pepelyshev, A., Zhigljavsky, A., Žilinskas, A.: Performance of global random search algorithms for large dimensions. J. Global Optim. 71(1), 57–71 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rahal, M., Ziadi, A.: A new extension of Piyavskii’s method to Hölder functions of several variables. Appl. Math. Comput. 197(2), 478–488 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Rönkkönen, J., Li, X., Kyrki, V., Lampinen, J.: A framework for generating tunable test functions for multimodal optimization. Soft Comput. 15(9), 1689–1706 (2011)

    Article  Google Scholar 

  29. Sagan, H.: Space-filling curves. Springer, New York (1994)

    Book  MATH  Google Scholar 

  30. Secelean, N.A.: Weak \(F\)-contractions and some fixed point results. Bull. Iran. Math. Soc. 42(3), 779–798 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Secelean, N.A.: Generalized countable iterated function systems. Filomat 25(1), 21–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sergeyev, Ya.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting space-filling curves. Springer, New York (2013)

    Book  MATH  Google Scholar 

  33. Strobin, F., Swaczyna, J.: On a certain generalisation of the iterated function system. Bull. Aust. Math. 87(1), 37–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vijender, N., Drakopoulos, V.: On the Bernstein affine fractal interpolation curved lines and surfaces. Axioms 9(119) (2020)

  35. Zabinsky, Z.B.: Stochastic adaptive search for global optimization. Kluwer Academic Publishers, Amsterdam (2003)

    Book  MATH  Google Scholar 

  36. Ziadi, R., Bencherif-Madani, A., Ellaia, A.: Continuous global optimization through the generation of parametric curves. Appl. Math. Comput. 282(5), 65–83 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referee for his/her careful reading of the paper and proposed comments and corrections to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, G. Continuous global optimization on fractals through \(\alpha \)-dense curves. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 165 (2023). https://doi.org/10.1007/s13398-023-01493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01493-9

Keywords

Mathematics Subject Classification

Navigation