Skip to main content
Log in

Abstract

In this article we present some additional and complementary remarks to an earlier paper on finite trigonometric power sums. First, we extend the results to include an offset angle in the trigonometric power in the summand. Next we include more complicated phase factors accompanying the trigonometric powers. Despite their more intricate nature, we find that these trigonometric power sums are still rational. Finally, we not only prove the conjecture raised in the earlier paper, but also generalize it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alzer, H., Kouba, O.: Inequalities for weighted trigonometric sums. In: Trigonometric Sums and Their Applications, pp. 85–96. Springer (2020)

  2. Byrne, G.J., Smith, S.J.: Some integer-valued trigonometric sums. Proc. Edinb. Math. Soc. 40(2), 393–401 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cadavid, C.A., Hoyos, P., Jorgenson, J., Smajlović, L., Vélez, J.D.: On an approach for evaluating certain trigonometric character sums using the discrete time heat kernel. Eur. J. Comb. 108, 103635 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chu, W.: Jordan’s totient function and trigonometric sums. Stud. Sci. Math. Hungar. 57, 40–53 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Chu, W.: Reciprocal relations for trigonometric sums. Rocky Mt. J. Math. 49, 121–141 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Chu, W.: Summations on trigonometric functions. Appl. Math. Comput. 141, 161–176 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Chu, W., Marini, A.: Partial fractions and trigonometric identities. Adv. Appl. Math. 23, 115–175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cvijović, D., Srivastava, H.M.: Closed-form summations of Dowker’s and related trigonometric sums. J. Phys. A Math. Theor. 45, 1–10 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cvijović, D., Srivastava, H.M.: Closed-form summation of Dowker and related sums. J. Math. Phys. 48, 043507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. da Fonseca, C.M.: Solution to the open problem 98*. Eur. Math. Soc. Newsl. 85, 67–68 (2012)

    Google Scholar 

  11. da Fonseca, C.M., Kowalenko, V.: On a finite sum with powers of cosines. Appl. Anal. Discrete Math. 7, 354–377 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. da Fonseca, C.M., Glasser, M.L., Kowalenko, V.: Basic trigonometric power sums with applications. Ramanujan J. 42, 401–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. da Fonseca, C.M., Glasser, M.L., Kowalenko, V.: Generalized cosecant numbers and trigonometric inverse power sums. Appl. Anal. Discrete Math. 572, 46–50 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Dowker, J.S.: On Verlinde’s formula for the dimensions of vector bundles on moduli spaces. J. Phys. A Math. Gen. 25, 2641–2648 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ejsmont, V., Lehner, F.: The trace method for cotangent sums. J. Comb. Theory A 177, 105324 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fisher, M.E.: Sum of inverse powers of cosines (L.A. Gardner, Jr.). SIAM Rev. 13, 116–119 (1971)

    Article  Google Scholar 

  17. Gardner, L.A., Jr.: Sum of inverse powers of cosines. SIAM Rev. 11, 621 (1969)

    Article  Google Scholar 

  18. Giuggioli, L.: Exact spatiotemporal dynamics of confined lattice random walks in arbitrary dimensions: a century after Smoluchowski and Pólya. Phys. Rev. X 10, 021045 (2020)

    MathSciNet  Google Scholar 

  19. Greening, M.G., Carlitz, L., Gootkind, D., Hoffman, S., Reich, S., Scheinok, P., Quoniam, J.M.: A trigonometric summation—solution to problem E1937. Am. Math. Mon. 75(4), 405–406 (1968)

    Google Scholar 

  20. Hansen, E.R.: A Table of Series and Products. Prentice-Hall, Inc., Englewood Hills (1975)

    MATH  Google Scholar 

  21. Hassan, H.A.: New trigonometric sums by sampling theorem. J. Math. Anal. Appl. 339, 811–827 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Holcombe, S.R.: Falling coupled oscillators and trigonometric sums. Z. Angew. Math. Phys. 69, 19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klamkin, M.S. (ed.): pp. 157–160. SIAM, Philadelphia (1990)

    MATH  Google Scholar 

  24. Kowalenko, V.: On a finite sum involving inverse powers of cosines. Acta Appl. Math. 115(2), 139–151 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Merca, M.: A note on cosine power sums. J. Integer Seq. 15(5), Article 12.5.3 (2012)

  26. Milovanović, G.V., Simsek, Y.: Dedekind and Hardy type sums and trigonometric sums induced by quadrature formulas. In: Trigonometric Sums and Their Applications, pp. 183–228. Springer (2020)

  27. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain M.A. (eds.): NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.4 of 2021-01-15

  28. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series: Elementary Functions, vol. I. Gordon & Breach, New York (2003)

    MATH  Google Scholar 

  29. Ramanujan’s sum, Wikipedia, The Free Encyclopedia, September 25, 2021, 10:00 UTC. https://en.wiki-pedia.org/w/in-dex.php?title=Rama-nu-jan%27s_sum &oldid=1046375022. Accessed 13 Oct 2021

  30. Root of Unity, Wikipedia, The Free Encyclopedia, December 18, 2021, 10:00 UTC. https://en.wikipedia.org/w/index.php?title=Root_of_unity &oldid=1060882342. Accessed 18 Feb 2022

  31. Quoniam, J.M.: Problem E1937. Am. Math. Mon. 73(10), 1122 (1966)

    MathSciNet  Google Scholar 

  32. Sofo, A.: General order Euler sums with multiple argument. J. Number Theory 189, 255–271 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Zheng, D.Y.: Summation formulae on trigonometric functions. J. Math. Anal. Appl. 335(2), 1020–1037 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. da Fonseca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., da Fonseca, C.M. & Kowalenko, V. Further developments of basic trigonometric power sums. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 112 (2023). https://doi.org/10.1007/s13398-023-01442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01442-6

Keywords

Mathematics Subject Classification

Navigation