Skip to main content
Log in

Uniqueness and asymptotics of singularly perturbed equations involving implicit boundary conditions

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

A class of one-dimensional convection–diffusion equations with a singularly perturbed parameter in a bounded domain is presented, where the boundary condition is nonlocal type with an implicit form related to the unknown solutions. In general, the validity of the maximum principle of this type equation is unassurable. Employing a singular perturbations method as a natural tool, we establish the uniqueness and maximum principle as the singularly perturbed parameter is sufficiently small. Such an argument is different from the standard fixed point approaches. Moreover, as this parameter tends to zero, the boundary and interior asymptotics of solutions is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

Notes

  1. Note that the equation of \(v_{\varepsilon ,\lambda }\) is equivalent to the equation \(-\varepsilon ^2(D_{\varepsilon }(x)v_{\varepsilon ,\lambda }'(x))'+D_{\varepsilon }(x)b(x)f(v_{\varepsilon ,\lambda })=0\), \(x\in (0,\ell )\), with the corresponding energy functional \(E_{\varepsilon }[v_{\varepsilon ,\lambda }]=\int _0^{\ell }D_{\varepsilon }\left( \frac{\varepsilon ^2}{2}v_{\varepsilon ,\lambda }'^2+bF(v_{\varepsilon ,\lambda })\right) \,\mathrm {d}x\), where \(D_{\varepsilon }(x):=\exp \left( -\int _0^x\frac{a(y)}{\varepsilon }\,\mathrm {d}y\right) \) is positive on \([0,\ell ]\), and \(F(t)=\int _0^tf(s)\,{\mathsf {d}}s\ge 0\) is convex (by (1.4)). Since \(b>0\), for each fixed \(\varepsilon >0\) and \(\lambda \in {\mathbb {R}}\), by the direct method in the calculus of variations one obtains that \(E_{\varepsilon }[v_{\varepsilon ,\lambda }]\) is a convex functional and has a minimizer over the space \({\mathcal {H}}=\{v_{\varepsilon ,\lambda }\in \text {H}^1((0,\ell )):\,v_{\varepsilon ,\lambda }(0)=0,\,\,v_{\varepsilon ,\lambda }(\ell )=\lambda \}\). As a consequence, the regularity theory for elliptic equations implies that this minimizer is a classical solution of (1.6).

References

  1. Adomian, G.: Solving frontier problems of physics. The decomposition method. Kluwer, Boston (1994)

    Book  MATH  Google Scholar 

  2. Bandle, C., Sperb, R.P., Stakgold, I.: Diffusion and reaction with monotone kinetics. Nonlinear Anal. 8, 321–333 (1984)

    Article  MATH  Google Scholar 

  3. Boucherif, A.: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal. 70, 364–371 (2009)

    Article  MATH  Google Scholar 

  4. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    Article  MATH  Google Scholar 

  5. Cakir, M., Amiraliyev, G.M.: A finite difference method for the singularly perturbed problem with nonlocal boundary condition. Appl. Math. Comput. 160, 539–549 (2005)

    MATH  Google Scholar 

  6. Cakir, M., Arslan, D.: A new numerical approach for a singularly perturbed problem with two integral boundary conditions. Comp. Appl. Math. 40, 189 (2021)

    Article  MATH  Google Scholar 

  7. Casas, E., Fernández, L.A.: Optimal control of semilinear elliptic equations with pointwise constraints on the gradient of the state. Appl. Math. Optim. 27, 35–56 (1993)

    Article  MATH  Google Scholar 

  8. Chen, X., Lee, C.-C., Mizuno, M.: Unified asymptotic analysis and numerical simulations of singularly perturbed linear differential equations under various nonlocal boundary effects (2022)

  9. Cziegis, R.: The difference schemes for problems with nonlocal conditions. Informatica (Lietuva) 2, 155–170 (1991)

    Google Scholar 

  10. Danilin, A.R.: Approximation of a singularly perturbed elliptic problem of optimal control. Sb. Math. 191, 1421–1431 (2000)

    Article  MATH  Google Scholar 

  11. Delves, L.M., Walsh, J.: Numerical solution of integral equations. Oxford University Press, London (1974)

    MATH  Google Scholar 

  12. Dehghan, M.: A computational study of the onedimensional parabolic equation subject to nonclassical boundary specifications. Numer. Methods Partial Differ. Eqs. 22, 220–257 (2006)

    Article  MATH  Google Scholar 

  13. Dehghan, M., Ramezani, M.: Composite spectral method for solution of the diffusion equation with specification of energy. Numer. Methods Partial Differ. Eqs. 24, 950–959 (2008)

    Article  MATH  Google Scholar 

  14. Ervin, V., Layton, W.: An analysis of a defect-correction method for a model convection-diffusion equation. SIAM J. Numer. Anal. 26(1), 169–179 (1989)

    Article  MATH  Google Scholar 

  15. Evans, L.C.: Partial differential equations, 2nd edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. xxii+749 pp

  16. Feng, M.: Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions. Appl. Math. Lett. 24, 1419–1427 (2011)

    Article  MATH  Google Scholar 

  17. Han, H., Huang, Z.: Tailored finite point method based on exponential bases for convection-diffusion-reaction equation. Math. Comp. 82(281), 213–226 (2013)

    Article  MATH  Google Scholar 

  18. Iliescu, T., Wang, Z.: Variational multiscale proper orthogonal decomposition: Convection dominated convection-diffusion-reaction equations. Math. Comp. 82, 1357–1378 (2013)

    Article  MATH  Google Scholar 

  19. Jaworski, M., Kaup, D.: Direct and inverse scattering problem associated with the elliptic sinh-Gordon equation. Inverse Probl, 6, 543–556 (1990)

    Article  MATH  Google Scholar 

  20. Karl, V., Wachsmuth, D.: An augmented Lagrange method for elliptic state constrained optimal control problems. Comput. Optim. Appl. 69, 857–880 (2018)

    Article  MATH  Google Scholar 

  21. Kruse, F., Ulbrich, M.: A self-concordant interior point approach for optimal control with state constraints. SIAM J. Optim. 25, 770–806 (2015)

    Article  MATH  Google Scholar 

  22. Kythe, P., Puri, P.: Computational methods for linear integral equations. Birkhäuser Basel, Boston (2002)

    Book  MATH  Google Scholar 

  23. Lee, C.-C.: Effects of the bulk volume fraction on solutions of modified Poisson–Boltzmann equations. J. Math. Anal. Appl. 437, 1101–1129 (2016)

    Article  MATH  Google Scholar 

  24. Lee, C.-C.: Nontrivial boundary structure in a Neumann problem on balls with radii tending to infinity. Ann. Mat. Pura Appl. 199(3), 1123–1146 (2020)

    Article  MATH  Google Scholar 

  25. Lee, C.-C.: Domain-size effects on boundary layers of a nonlocal sinh-Gordon equation. Nonlinear. Anal. 202, 112141 (2021)

    Article  MATH  Google Scholar 

  26. Lee, C.-C., Mizuno, M., Moon, S.-H.: On the uniqueness of linear convection–diffusion equations with integral boundary conditions. C. R. Math. Acad. Sci. Paris (2022)

  27. Liu, Y., Wang, J., Zou, Q.: A conservative flux optimization finite element method for convection-diffusion equations. SIAM J. Numer. Anal. 57(3), 1238–1262 (2019)

    Article  MATH  Google Scholar 

  28. Liu, L., Hao, X., Wu, Y.: Positive solutions for singular second order differential equations with integral boundary conditions. Math. Comput. Modell. 57, 836–847 (2013)

    Article  MATH  Google Scholar 

  29. Meyer, C., Rösch, A., Tröltzsch, F.: Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33, 209–228 (2006)

    Article  MATH  Google Scholar 

  30. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  31. Nayfeh, A.H.: Introduction to perturbation techniques. Wiley, New York (1993)

    MATH  Google Scholar 

  32. Pao, C.V.: Dynamics of reaction-diffusion equations with nonlocal boundary conditions. Quart. Appl. Math. 53, 173–186 (1995)

    Article  MATH  Google Scholar 

  33. Pao, C.V.: Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. J. Comput. Appl. Math 136, 227–243 (2001)

    Article  MATH  Google Scholar 

  34. Rösch, A., Wachsmuth, D.: A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120, 733–762 (2012)

    Article  MATH  Google Scholar 

  35. Saadatmandi, A., Dehghan, M.: Numerical solution of the one-dimensional wave equation with an integral condition. Numer. Methods Partial Differ. Eqs. 23, 282–292 (2007)

    Article  MATH  Google Scholar 

  36. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Volume 112 of Graduate Studies in Mathematics, American Mathematical Society, Providence (2010)

  37. Wu, L., Ni, M., Lu, H.: Internal layer solution of singularly perturbed optimal control problem with integral boundary condition. Qual. Theory Dyn. Syst. 17, 49–66 (2018)

    Article  MATH  Google Scholar 

  38. Xu, X., Oregan, D., Chen, Y.: Structure of positive solution sets of semi-positone singular boundary value problems. Nonlinear Anal. 72, 3535–3550 (2010)

    Article  MATH  Google Scholar 

  39. Xie, F., Jin, Z., Ni, M.: On the step-type contrast structure of a second-order semilinear differential equation with integral boundary conditions. Electr. J. Qual. Theory Differ. Eqs. 62, 1–14 (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for the constructive comments that contributed to enhancing the overall quality of the original manuscript. This work was partially supported by the MOST grants of Taiwan with numbers 108-2115-M-007-006-MY2 and 110-2115-M-007 -003 -MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiun-Chang Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CC. Uniqueness and asymptotics of singularly perturbed equations involving implicit boundary conditions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 51 (2023). https://doi.org/10.1007/s13398-022-01383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-022-01383-6

Keywords

Mathematics Subject Classification

Navigation