Skip to main content
Log in

Abstract

We study the radiative transfer equations coupled with the time dependent temperature equation of a fluid: existence, uniqueness, a maximum principle are established. A short numerical section illustrates the pros and cons of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bardos, C., Pironneau, O.: Radiative Transfer for the Greenhouse Effect. Submitted to SeMA J. Springer (2021). https://hal.sorbonne-universite.fr/hal-03094855

  2. Bardos, C., Golse, F., Perthame, B., et al.: The nonaccretive radiative transfer equations: existence of solutions and the Rosseland approximation. J. Funct. Anal. 77, 434–460 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bohren, C.F.: Fundamentals of Atmospheric Radiation. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Chandrasekhar, S.: Radiative Transfer. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  6. Crandall, M.G., Tartar, L.: Some relations between nonexpansive and order preserving mappings. Proc. Am. Math. 78, 385–390 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dufresne, J., Eymet, V., Crevoisier, C., et al.: Greenhouse effect: the relative contributions of emission height and total absorption. .J. Clim. Am. Meteorol. Soc. 33(9), 3827–3844 (2020)

    Google Scholar 

  8. Fowler, A.: Mathematical Geoscience. Springer, New York (2011)

    Book  MATH  Google Scholar 

  9. Ghattassi, M., Huo, X., Masmoudi, N.: On the diffusive limits of radiative heat transfer system i: well prepared initial and boundary conditions. 2007:13209 (2020)

  10. Golse, F.: The Milne problem for the radiative transfer equations (with frequency dependence). Trans. Am. Math. Soc. 303, 125–143 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golse, F., Perthame, B.: Generalized solutions of the radiative transfer equations in a singular case. Commun. Math. Phys. 106, 211–239 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golse, F., Pironneau, O.: Stratified radiative transfer in a fluid and numerical applications to earth science. SIAM J. Numer. Anal. 60(5), 2963–3000 (2022)

  13. Golse, F., Pironneau, O.: Stratified radiative transfer for multidimensional fluids. Special Volume “fifty years of CFD” to appear in the Compte Rendus de Mécanique de l’académie des sciences (2022)

  14. Goody, R., Yung, Y.: Atmospheric Radiation. Oxford University Press, Oxford (1961)

    Google Scholar 

  15. Hecht, F.: New developments in freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. LeHardy, D., Favennec, Y., Rousseau, B., et al.: Specular reflection treatment for the 3d radiative transfer equation solved with the discrete ordinates method. J. Comput. Phys. 334, 541–572 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lions, J., Magenes, E.: Non Homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972)

    Book  MATH  Google Scholar 

  18. Lions, P.L.: Mathematical Topics in Fluid Dynamics. Incompressible Models, vol. 1. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  19. Marshak, A., Davis, A. (eds.): 3D Radiative Transfer in Cloudy Atmospheres, Physics of Earth and Space Environments, vol. 5117. Springer, Berlin (2005)

    Google Scholar 

  20. Mercier, B.: Application of accretive operators theory to the radiative transfer equations. SIAM J. Math. Anal. 18(2), 393–408 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  22. Pironneau, O.: A fast and accurate numerical method for radiative transfer in the atmosphere. Comptes Rendus. Mathématique 359(9), 1179–1189 (2021)

  23. Pomraning, G.: The Equations of Radiation Hydrodynamics. Pergamon Press, New York (1973)

    Google Scholar 

  24. Porzio, M., Lopez-Pouso, O.: Application of accretive operators theory to evolutive combined conduction, convection and radiation. Rev. Mat. Iberoamericana 20, 257–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zdunkowski, W., Trautmann, T.: Radiation in the Atmosphere. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Claude Bardos for the numerous discussions and references given.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pironneau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golse, F., Pironneau, O. Radiative transfer in a fluid. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 37 (2023). https://doi.org/10.1007/s13398-022-01362-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-022-01362-x

Keywords

Mathematics Subject Classification

Navigation