Skip to main content
Log in

Abstract

In this paper we study a problem in the area of coding theory. In particular, we focus on a class of error-correcting codes called convolutional codes. We characterize convolutional codes that can correct bursts of erasures with the lowest possible delay. This characterization is given in terms of a block Toeplitz matrix with entries in a finite field that is built upon a given generator matrix of the convolutional code. This result allows us to provide a concrete construction of a generator matrix of a convolutional code with entries being only zeros or ones that can recover bursts of erasures with low delay. This construction admits a very simple decoding algorithm and, therefore, simplifies the existing schemes proposed recently in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Almeida, P., Napp, D., Pinto, R.: A new class of superregular matrices and MDP convolutional codes. Linear Algebra Appl. 439(7), 2145–2157 (2013)

    Article  MathSciNet  Google Scholar 

  2. Almeida, P., Napp, D., Pinto, R.: Superregular matrices and applications to convolutional codes. Linear Algebra Appl. 499, 1–25 (2016)

    Article  MathSciNet  Google Scholar 

  3. Arai, M., Yamaguci, A., Fukumpto, S., Iwasaki, K.: Method to recover lost internet packets using \((n, k, m)\) convolutional code. Electron. Commun. Jpn 88(7), 1–13 (2005)

    Article  Google Scholar 

  4. Badr, A., Khisti, A., Tan, W.T., Apostolopoulos, J.: Robust streaming erasure codes based on deterministic channel approximations. In: 2013 IEEE International Symposium on Information Theory, pp. 1002–1006 (2013)

  5. Badr, A., Khisti, A., Tan, W.T., Apostolopoulos, J.: Layered constructions for low-delay streaming codes. IEEE Trans. Inf. Theory 63(1), 111–141 (2017)

    Article  MathSciNet  Google Scholar 

  6. Barbero, A., Ytrehus, Ø.: Rate \((n-1)/n\) systematic memory maximum distance separable convolutional codes. IEEE Trans. Inf. Theory 64(4), 3018–3030 (2018)

    Article  MathSciNet  Google Scholar 

  7. Climent, J.-J., Herranz, V., Perea, C.: A first approximation of concatenated convolutional codes from linear systems theory viewpoint. Linear Algebra Appl. 425, 673–699 (2007). https://doi.org/10.1016/j.laa.2007.03.017

    Article  MathSciNet  MATH  Google Scholar 

  8. Chan, R. H.-F., Jin,X.-Q.: An introduction to iterative Toeplitz solvers. In: Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), vol. 5 (2007)

  9. Deng, H., Kuijper, M., Evans, J.: Burst erasure correction capabilities of \((n,n-1)\) convolutional codes. In: 2009 IEEE International Conference on Communications, pp. 1–5 (2009)

  10. Forney Jr., G.D.: Structural analysis of convolutional codes via dual codes. IEEE Trans. Inf. Theory 19(4), 512–518 (1973). https://doi.org/10.1109/TIT.1973.1055030

    Article  MathSciNet  MATH  Google Scholar 

  11. Gluesing-Luerssen, H., Rosenthal, J., Smarandache, R.: Strongly MDS convolutional codes. IEEE Trans. Inf. Theory 52(2), 584–598 (2006)

    Article  MathSciNet  Google Scholar 

  12. Gutiérrez-Gutiérrez, J., Crespo, P.M.: Block Toeplitz matrices: asymptotic results and applications. Found. Trends Commun. Inf. Theory 8(3), 180–256 (2012). https://doi.org/10.1561/0100000066

    Article  MATH  Google Scholar 

  13. Gutiérrez-Gutiérrez, J., Crespo, P.M., Bottcher, A.: Functions of banded Hermitian block Toeplitz matrices in signal processing. Linear Algebra Appl. 422, 788–807 (2007)

    Article  MathSciNet  Google Scholar 

  14. Hansen, J., Østergaard, J., Kudahl, J., Madsen, J.: On the construction of jointly superregular lower triangular toeplitz matrices. In: International Symposium on Information Theory (ISIT) (2016)

  15. Hansen, J., Østergaard, J., Kudahl, J., Madsen, J.H.: Superregular lower triangular Toeplitz matrices for low delay wireless streaming. IEEE Trans. Commun. 65(9), 4027–4038 (2017)

    Article  Google Scholar 

  16. Hutchinson, R.: The existence of strongly MDS convolutional codes. SIAM J. Control Optim. 47(6), 2812–2826 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hutchinson, R., Smarandache, R., Trumpf, J.: On superregular matrices and MDP convolutional codes. Linear Algebra Appl. 428, 2585–2596 (2008)

    Article  MathSciNet  Google Scholar 

  18. Jin,X.-Q.: Developments and applications of block Toeplitz iterative solvers. In: Combinatorics and Computer Science, vol. 2. Kluwer Academic, Dordrecht (2002)

  19. Johannesson, R., Zigangirov, K.S.: Fundamentals of convolutional coding. In: IEEE Series on Digital & Mobile Communication, vol. 15. IEEE Press, New York (2015)

  20. Kitchens, B.: Symbolic dynamics and convolutional codes. In: Marcus, B., Rosenthal, J. (eds.) Codes, Systems, and Graphical Models, pp. 347–360. Springer, Berlin (2000)

    MATH  Google Scholar 

  21. Kuijper, M., Bossert, M.: On (partial) unit memory codes based on Reed–Solomon codes for streaming. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 920–924 (2016)

  22. Guardia, G.G.L.: On negacyclic MDS-convolutional codes. Linear Algebra Appl. 448(Supplement C), 85–96 (2014)

    Article  MathSciNet  Google Scholar 

  23. Mahmood, R., Badr, A., Khisti, A.: Streaming-codes for multicast over burst erasure channels. IEEE Trans. Inf. Theory 61(8), 4181–4208 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mahmood, R., Badr, A., Khisti, A.: Convolutional codes with maximum column sum rank for network streaming. IEEE Trans. Inf. Theory 62(6), 3039–3052 (2016)

    Article  MathSciNet  Google Scholar 

  25. Marcus, B.: Symbolic dynamics and connections to coding theory, automata theory and system theory. In: Calderbank, R. (ed) Different Aspects of Coding Theory—Proceedings of Symposia in Applied Mathematics, vol. 50, pp. 95–108. American Mathematical Society, Providence (1995)

  26. Martinian, E., Sundberg, C.E.W.: Burst erasure correction codes with low decoding delay. IEEE Trans. Inf. Theory 50(10), 2494–2502 (2004)

    Article  MathSciNet  Google Scholar 

  27. McEliece, R.J.: The algebraic theory of convolutional codes. In: Handbook of Coding Theory, vol. 1, pp. 1065–1138. Elsevier Science Publishers, Amsterdam (1998)

  28. Muñoz Porras, J.M., Domínguez Pérez, J.A., Iglesias Curto, J.I., Serrano Sotelo, G.: Convolutionall Goppa codes. IEEE Trans. Inf. Theory 52(1), 340–344 (2006)

    Article  Google Scholar 

  29. Napp, D., Perea, C., Pinto, R.: Input-state-output representations and constructions of finite support 2D convolutional codes. Adv. Math. Commun. 4(4), 533–545 (2010). https://doi.org/10.3934/amc.2010.4.533

    Article  MathSciNet  MATH  Google Scholar 

  30. Napp, D., Smarandache, R.: Constructing strongly MDS convolutional codes with maximum distance profile. Adv. Math. Commun. 10(2), 275–290 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ng, M.K.: Iterative methods for Toeplitz systems. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)

  32. Rosenthal, J.: An algebraic decoding algorithm for convolutional codes. In: Picci, G., Gilliam, D. (eds.) Dynamical Systems, Control, Coding, Computer Vision: New Trends, Interfaces, and Interplay, pp. 343–360. Birkäuser, Boston (1999)

    Chapter  Google Scholar 

  33. Rosenthal, J., Smarandache, R.: Maximum distance separable convolutional codes. Appl. Algebra Eng. Commun. Comput. 10(1), 15–32 (1999)

    Article  MathSciNet  Google Scholar 

  34. Tomás, V.: Complete-mdp convolutional codes over the erasure channel. Ph.D. Thesis, Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante, España (2010)

  35. Tomás, V., Rosenthal, J., Smarandache, R.: Decoding of convolutional codes over the erasure channel. IEEE Trans. Inf. Theory 58(1), 90–108 (2012)

    Article  MathSciNet  Google Scholar 

  36. Rosenthal, J.: Connections between linear systems and convolutional codes. In: Marcus, B., osenthal, J. (eds.) Codes, Systems and Graphical Models, volume 123 of The IMA Volumes in Mathematics and its Applications, pp. 39–66. Springer, New York (2001). https://doi.org/10.1007/978-1-4613-0165-32

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Requena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version of this paper was presented at the Conference “Linear Algebra, Matrix Analysis and Applications. ALAMA2018”, held in Sant Joan d’Alacant on May/June 2018.

This work was partially supported by Spanish grants AICO/2017/128 of the Generalitat Valenciana and VIGROB-287 of the Universitat d’Alacant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climent, JJ., Napp, D. & Requena, V. Block Toeplitz matrices for burst-correcting convolutional codes. RACSAM 114, 38 (2020). https://doi.org/10.1007/s13398-019-00744-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-019-00744-y

Keywords

Mathematics Subject Classification

Navigation