Skip to main content
Log in

Convolution operators in the Fréchet sequence space \(\omega = \pmb {\mathbb {C}}^{\pmb {\mathbb {N}}}\)

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Each element \( b = ( b_n)^\infty _{ n = 0 } \) of \( \mathbb {C}^{\mathbb {N}},\) with \( \mathbb {N}= \{ 0, 1, 2, \ldots \},\) convolves the discrete Fréchet space \( \omega = \mathbb {C}^{\mathbb {N}} \) continuously into itself; denote this linear operator \( x \longmapsto b *x \) by \( T_b.\) Various properties of such operators are determined. For instance, the spectrum of \( T_b \) is the singleton set \( \{ b _0 \}.\) Furthermore, \( b_0 \) can either be an eigenvalue of \( T_b\) or lie in the residual spectrum of \( T_b, \) but never in the continuous spectrum. Every operator \( T_b \ne 0 \) is non-compact. Moreover, \( T_b \) fails to be supercyclic for all \( b \in \mathbb {C}^{\mathbb {N}}.\) It is shown that \( T_b \) is not mean ergodic if b satisfies \( | b_0 | > 1 \) and also whenever \( | b_0 | = 1 \) with \( b_0 \) lying in the residual spectrum of \( T_b.\) On the positive side, if b satisfies either \( b_0 = 0 \) or \( \sum ^\infty _{ n = 0} | b _n| \le 1,\) then \( T_b \) is mean ergodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese, A.A., Bonet, J., Ricker, W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Albanese, A.A., Bonet, J., Ricker, W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010)

    Article  MathSciNet  Google Scholar 

  3. Albanese, A.A., Bonet, J., Ricker, W.J.: Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaest. Math. 36, 253–290 (2013)

    Article  MathSciNet  Google Scholar 

  4. Albanese, A.A., Bonet, J., Ricker, W.J.: Convergence of arithmetic means of operators in Fréchet spaces. J. Math. Anal. Appl. 401, 160–173 (2013)

    Article  MathSciNet  Google Scholar 

  5. Albanese, A.A., Bonet, J., Ricker, W.J.: Uniform convergence and spectra of operators in a class of Fréchet spaces. Abstr. Appl. Anal. 2014, 179027 (2014). https://doi.org/10.1155/2014/179027

    Article  MATH  Google Scholar 

  6. Bayart, F., Matheron, E.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  7. Bellenot, S.F., Dubinsky, E.: Fréchet spaces with nuclear Köthe quotients. Trans. Am. Math. Soc. 273, 579–594 (1982)

    MATH  Google Scholar 

  8. Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 1–130 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Bonet, J., de Pagter, B., Ricker, W.J.: Mean ergodic operators and reflexive Fréchet lattices. Proc. R. Soc. Edinb. 141A, 897–920 (2011)

    Article  Google Scholar 

  10. Bourdon, P.S., Feldman, N.S., Shapiro, J.H.: Some properties of \(N\)-supercyclic operators. Stud. Math. 165, 135–157 (2004)

    Article  MathSciNet  Google Scholar 

  11. Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesàro operator on the Hardy space \( H^2 ({\mathbb{D}}),\). J. Math. Anal. Appl. 407, 387–397 (2013)

    Article  MathSciNet  Google Scholar 

  12. Curbera, G.P., Ricker, W.J.: Solid extensions of the Cesáro operator on \( \ell ^p \) and \( c_0\). Integral Equ. Oper. Theory 80, 61–77 (2014)

    Article  Google Scholar 

  13. Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Springer, London (2011)

    Book  Google Scholar 

  14. Grothendieck, A.: Topological Vector Spaces. Gordon and Breach, London (1975)

    Google Scholar 

  15. Köthe, G.: Topological Vector Spaces I, 2nd printing (revised). Springer, Berlin (1983)

    Book  Google Scholar 

  16. Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)

    Book  Google Scholar 

  17. Nikol’skiǐ, N.K.: On spaces and algebras of Toeplitz matrices operating in \( \ell ^p,\) Siber. Math. J. 7, 118–126 (1966)

    Google Scholar 

  18. Ricker, W.J.: Convolution operators in discrete Cesàro spaces. Arch. Math. (Basel) 112, 71–82 (2019)

    Article  MathSciNet  Google Scholar 

  19. Ricker, W.J.: The order spectrum of convolution operators in discrete Cesàro spaces. Indag. Math. (N.S.). https://doi.org/10.1016/j.indag.2019.01.008

  20. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  Google Scholar 

  21. Schaefer, H.H.: On the o-spectrum of order bounded operators. Math. Z. 154, 79–84 (1977)

    Article  MathSciNet  Google Scholar 

  22. Schur, I.: Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. J. Reine Angew. Math. 147, 205–232 (1917)

    MathSciNet  MATH  Google Scholar 

  23. Wilansky, A.: Summability Through Functional Analysis. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  24. Yosida, K.: Functional Analysis. Springer, Berlin (1965)

    Book  Google Scholar 

  25. Zaanen, A.C.: Riesz Spaces II. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Ricker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricker, W.J. Convolution operators in the Fréchet sequence space \(\omega = \pmb {\mathbb {C}}^{\pmb {\mathbb {N}}}\). RACSAM 113, 3069–3088 (2019). https://doi.org/10.1007/s13398-019-00675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-019-00675-8

Keywords

Mathematics Subject Classification

Navigation