Skip to main content
Log in

Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A scalable, low-cost process for fabricating copper-based microwave components on flexible, paper-based substrates is demonstrated. An inkjet printer is used to deposit a catalyst-bearing solution (tailored for such printing) in a desired pattern on commercially-available, recyclable, non-toxic (Teslin®) paper. The catalystbearing paper is then immersed in an aqueous copper-bearing solution to allow for electroless deposition of a compact and conformal layer of copper in the inkjet-derived pattern. Meander monopole antennas comprised of such electroless-deposited copper patterns on paper exhibited comparable performance as for antennas synthesized via inkjet printing of a commercially-available silver nanoparticle ink. However, the solution-based patterning and electroless copper deposition process avoids nozzle-clogging problems and costs associated with noble metal particle-based inks. This process yields compact conductive copper layers without appreciable oxidation and without the need for an elevated temperature, post-deposition thermal treatment commonly required for noble metal particle-based ink processes. This low-cost copper patterning process is readily scalable on virtually any substrate and may be used to generate a variety of copper-based microwave devices on flexible, paper-based substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Kamyshny, J. Steinke, and S. Magdassi, Open Appl. Phys. J. 4, 19 (2011).

    Article  CAS  Google Scholar 

  2. V. Subramanian, The Chemistry of Inkjet Inks (ed. S. Magdassi), p. 283, World Scientific Pub., Singapore (2010).

  3. E. Tekin, P. J. Smith, and U. S. Schubert, Soft Matter 4, 703 (2008).

    Article  CAS  Google Scholar 

  4. P. Calvert, Chem. Mater. 13, 3299 (2001).

    Article  CAS  Google Scholar 

  5. B. S. Cook and A. Shamim, IEEE T. Antenn. Propag. 60, 4148 (2012).

    Article  Google Scholar 

  6. H.-Y. Tseng and V. Subramanian, Org. Electron. 12, 249 (2011).

    Article  CAS  Google Scholar 

  7. G. Shaker, A. Rida, S. Safavi-Naeini, M. M. Tentzeris, and S. Nikolaou, Proc. 5th Euro. Conf. Antennas Propag. (EUCAP), p. 3001, IEEE Inst. Elec. Electron. Eng. Inc., San Francisco, CA USA (2011).

    Google Scholar 

  8. L. Yang, R. W. Zhang, D. Staiculescu, C. P. Wong, and M. M. Tentzeris, IEEE Antenn. Wirel. Pr. 8, 653 (2009)

    Article  Google Scholar 

  9. A. Rida, L. Yang, R. Vyas, and M. M. Tentzeris, IEEE Antennas Propag. M. 51, 13 (2009).

    Article  Google Scholar 

  10. J. Perelaer, M. Klokkenburg, C. R. Hendriks, and U. S. Schubert, Adv. Mater. 21, 4830 (2009).

    Article  CAS  Google Scholar 

  11. L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, IEEE T. Microw. Theory, 55, 2894 (2007).

    Article  Google Scholar 

  12. T. Sekitani, Y. Noguchi, Y. Zschieschang, H. Klauk, and T. Someya, P. Natl. Acad. Sci. USA 105, 4976 (2008).

    Article  CAS  Google Scholar 

  13. Y. Noguchi, T. Sekitani, and T. Someya, Appl. Phys. Lett. 89, 253507 (2006).

    Article  Google Scholar 

  14. V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger, and S. K. Volkman, P. IEEE 93, 1330 (2005).

    Article  CAS  Google Scholar 

  15. T. H. J. van Osch, J. Perelaer, A. W. M. de Laat, and U. S. Schubert, Adv. Mater. 20, 343 (2008).

    Article  Google Scholar 

  16. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, and D. Poulikakos, Nanotechnology 18, 345202 (2007).

    Article  Google Scholar 

  17. J. Cheon, J. Lee, and J. Kim, Thin Solid Films 520, 2639 (2012).

    Article  CAS  Google Scholar 

  18. S. Magdassi, M. Grouchko, and A. Kamyshny, Mater. 3, 4626 (2010).

    Article  CAS  Google Scholar 

  19. I. Kim and J. Kim, J. Appl. Phys. 108, 102807 (2010).

    Article  Google Scholar 

  20. M. Grouchko, A. Kamyshny, and S. Magdassi, J. Mater. Chem. 19, 3057 (2009).

    Article  CAS  Google Scholar 

  21. P. Kanninen, C. Johans, J. Merta, and K. Kontturi, J. Coll. Interf. Sci. 318, 88 (2008).

    Article  CAS  Google Scholar 

  22. S. M. Bidoki, D. M. Lewis, M. Clark, A. Vakorov, P. A. Millner, and D. McGorman, J. Micromech. Microeng. 17, 967 (2007).

    Article  CAS  Google Scholar 

  23. X. Xia, C. Xie, S. Cai, Z. Yang, and X. Yang, Corros. Sci. 48, 3924 (2006).

    Article  CAS  Google Scholar 

  24. A description of characteristics of printable fluids for the Dimatix DMP-2800 inkjet printer can be found at: http://www.fujifilmusa.com/products/industrial_inkjet_printheads/deposition-products/dmp-2800/index.html

  25. C. Kim, M. Nogi, K. Suganuma, Y. Saitou, and J. Shirakami, RSC Adv. 2, 8447 (2012).

    Article  CAS  Google Scholar 

  26. K. P. Latti, M. Kettunen, J. P. Stoem, and P. Silventoinen, IEEE T. Instrum. Meas. 56, 1845 (2007).

    Article  Google Scholar 

  27. D. Markovic, B. Jokanovic, M. Marjanovic, and M. Djordjevic, Instrument. Measurement Technol Conf. Proc. p. 1, IMTC, IEEE Inst. Elec. Electron. Eng. Inc., San Francisco, CA USA (2007).

    Google Scholar 

  28. A. R. Fulford and S. M. Wentworth, Microw. Opt. Techn. Lett. 47, 14 (2005).

    Article  Google Scholar 

  29. R. K. Hoffmann, Handbook of Microwave Integrated Circuits. Artech House, Norwood, MA USA (1987).

    Google Scholar 

  30. R. W. Pekala, R. A. Schwarz, R. G. Swisher, R. C. Wang, R. O. Ondeck, and M. O. Okoroafor, Polym. Mater. Sci. Eng. 76, 593 (1997).

    CAS  Google Scholar 

  31. W. J. Dressick, C. S. Dulcey, J. H. Georger, Jr., G. S. Calabrese, and J. M Calvert, J. Electrochem. Soc. 141, 210 (1994).

    Article  CAS  Google Scholar 

  32. M. Charbonnier, M. Romand, G. Stremsdoerfer, and A. Fares-Karam, Recent Res. Dev. Macromol. Res. 4, 27 (1999).

    CAS  Google Scholar 

  33. Y. Shacham-Diamand and S. Lopatin, Electrochim. Acta 44, 3639 (1999).

    Article  CAS  Google Scholar 

  34. L. Xu, J. Liao, L. Huang, D. Ou, Z. Guo, H. Zhang, C. Ge, N. Gu, and J. Liu, Thin Solid Films 434, 121 (2003).

    Article  CAS  Google Scholar 

  35. Z. Bao, E. M. Ernst, S. Yoo, and K. H. Sandhage, Adv. Mater. 21, 474 (2009).

    Article  CAS  Google Scholar 

  36. Y. Fang, Y. D. Berrigan, Y. Cai, S. R. Marder, and K. H. Sandhage, J. Mater. Chem. 22, 1305 (2012).

    Article  CAS  Google Scholar 

  37. J. Baker-Jarvis, B. Riddle, and M. Janezic, NIST Tech. Rept. No. 1512, NIST, Gaithersburg, MD USA (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth H. Sandhage or Manos M. Tentzeris.

Additional information

These two authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, B.S., Fang, Y., Kim, S. et al. Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper. Electron. Mater. Lett. 9, 669–676 (2013). https://doi.org/10.1007/s13391-013-3027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3027-0

Keywords

Navigation