Skip to main content
Log in

A Bonus-Malus framework for cyber risk insurance and optimal cybersecurity provisioning

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

The cyber risk insurance market is at a nascent stage of its development, even as the magnitude of cyber losses is significant and the rate of cyber loss events is increasing. Existing cyber risk insurance products as well as academic studies have been focusing on classifying cyber loss events and developing models of these events, but little attention has been paid to proposing insurance risk transfer strategies that incentivise mitigation of cyber loss through adjusting the premium of the risk transfer product. To address this important gap, we develop a Bonus-Malus model for cyber risk insurance. Specifically, we propose a mathematical model of cyber risk insurance and cybersecurity provisioning supported with an efficient numerical algorithm based on dynamic programming. Through a numerical experiment, we demonstrate how a properly designed cyber risk insurance contract with a Bonus-Malus system can resolve the issue of moral hazard and benefit the insurer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The code used in this work for the experiment is available on GitHub: https://github.com/qikunxiang/CyberInsuranceBonusMalus.

Notes

  1. https://www.aig.com/business/insurance/cyber-insurance/, accessed on 2020-12-10.

  2. https://www.agcs.allianz.com/solutions/financial-lines-insurance/cyber-insurance.html, accessed on 2020-12-10.

  3. https://www.chubb.com/us-en/business-insurance/cyber-enterprise-risk-management-cyber-erm.html, accessed on 2020-12-10.

  4. Throughout the paper, we use the following notations: \((x)^+:=\max \{x,0\}\), \(x\vee y:=\max \{x,y\}\) and \(x\wedge y:=\min \{x,y\}\).

  5. The code used in this work for the experiment is available on GitHub: https://github.com/qikunxiang/CyberInsuranceBonusMalus

  6. The results under these modified settings are available in the online appendix on GitHub: https://github.com/qikunxiang/CyberInsuranceBonusMalus

References

  1. Armenia S, Angelini M, Nonino F, Palombi G, Schlitzer MF (2021) A dynamic simulation approach to support the evaluation of cyber risks and security investments in SMEs. Decis Support Syst 147:113580

    Article  Google Scholar 

  2. Baione F, Levantesi S, Menzietti M (2002) The development of an optimal bonus-malus system in a competitive market. ASTIN Bull J IAA 32(1):159–170

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandyopadhyay T, Mookerjee VS, Rao RC (2009) Why IT managers don’t go for cyber-insurance products. Commun ACM 52(11):68–73

    Article  Google Scholar 

  4. Bessy-Roland Y, Boumezoued A, Hillairet C (2021) Multivariate Hawkes process for cyber insurance. Ann Actuarial Sci 15(1):14–39

    Article  Google Scholar 

  5. Biener C, Eling M, Wirfs JH (2015) Insurability of cyber risk: an empirical analysis. Geneva Pap Risk Insur-Issue Pract 40(1):131–158

    Article  Google Scholar 

  6. Böhme R, Schwartz G (2010) Modeling cyber-insurance: Towards a unifying framework. In 9th Annual Workshop on the Economics of Information Security, WEIS 2010, Harvard University, Cambridge, MA, USA, June 7-8, 2010,

  7. Boucher J-P (2023) Bonus-malus scale models: creating artificial past claims history. Ann Act Sci 17(1):36–62

    Article  Google Scholar 

  8. Charpentier A, David A, Elie R (2017) Optimal claiming strategies in bonus malus systems and implied Markov chains. Risks 5(4):58

    Article  Google Scholar 

  9. Chase J, Niyato D, Wang P, Chaisiri S, Ko RKL (2019) A scalable approach to joint cyber insurance and Security-as-a-Service provisioning in cloud computing. IEEE Trans Dependable Secure Comput 16(4):565–579

    Article  Google Scholar 

  10. Craigen D, Diakun-Thibault N, Purse R (2014) Defining cybersecurity. Technol Innovat Manag Rev 4(10):13–21

    Article  Google Scholar 

  11. Cremer F, Sheehan B, Fortmann M, Kia AN, Mullins M, Murphy F, Materne S (2022) Cyber risk and cybersecurity: A systematic review of data availability. The Geneva Papers on Risk and Insurance-Issues and Practice 47(3):698–736

    Article  Google Scholar 

  12. Cruz MG, Peters GW, Shevchenko PV (2015) Fundamental aspects of operational risk and insurance analytics: A handbook of operational risk. John Wiley & Sons,

  13. Dacorogna M, Debbabi N, Kratz M (2023) Building up cyber resilience by better grasping cyber risk via a new algorithm for modelling heavy-tailed data. European Journal of Operational Research,

  14. Dou W, Tang W, Wu X, Qi L, Xu X, Zhang X, Hu C (2020) An insurance theory based optimal cyber-insurance contract against moral hazard. Inf Sci 527:576–589

    Article  MathSciNet  MATH  Google Scholar 

  15. Dutta K, Perry J (2006) A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital. Technical report, Federal Reserve Bank of Boston

    Google Scholar 

  16. EIOPA. Understanding cyber insurance — a structured dialogue with insurance companies. https://www.eiopa.europa.eu/publications/understanding-cyber-insurance-structured-dialogue-insurance-companies_en, Aug 2018. Accessed: 2023-05-23

  17. Eling M (2020) Cyber risk research in business and actuarial science. Eur Actuar J 10(2):303–333

    Article  MathSciNet  Google Scholar 

  18. Eling M, Loperfido N (2017) Data breaches: Goodness of fit, pricing, and risk measurement. Insurance: mathematics and economics, 75: 126–136

  19. Eling M, Wirfs J (2019) What are the actual costs of cyber risk events? Eur J Oper Res 272(3):1109–1119

    Article  Google Scholar 

  20. Eling M, Wirfs JH (2015) Modelling and management of cyber risk. International Actuarial Association Life Section,

  21. Embrechts P, Frei M (2009) Panjer recursion versus FFT for compound distributions. Math Methods Oper Res 69(3):497–508

    Article  MathSciNet  MATH  Google Scholar 

  22. Embrechts P, Klüppelberg C, Mikosch T (1997) Modelling extremal events, vol 33. Applications of Mathematics (New York). Springer-Verlag, Berlin

  23. Fahrenwaldt MA, Weber S, Weske K (2018) Pricing of cyber insurance contracts in a network model. Astin Bull. 48(3):1175–1218

    Article  MathSciNet  MATH  Google Scholar 

  24. Farkas S, Lopez O, Thomas M (2021) Cyber claim analysis using Generalized Pareto regression trees with applications to insurance. Insurance Math Econom 98:92–105

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng S, Xiong Z, Niyato D, Wang P, Leshem A (2018) Evolving risk management against advanced persistent threats in fog computing. In 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pages 1–6,

  26. Frachot A, Georges P, Roncalli T (2001) Loss Distribution Approach for operational risk. Available at SSRN 1032523,

  27. Franco EG The Global Risks Report 2020, World Economic Forum. https://www.weforum.org/reports/the-global-risks-report-2020/, Jan. 2020. Accessed: 2021-02-04

  28. Gómez-Déniz E (2016) Bivariate credibility bonus-malus premiums distinguishing between two types of claims. Insurance Math Econom 70:117–124

    Article  MathSciNet  MATH  Google Scholar 

  29. Gómez-Déniz E, Calderín-Ojeda E (2018) Multivariate credibility in bonus-malus systems distinguishing between different types of claims. Risks 6(2):34

    Article  Google Scholar 

  30. Gupta BB, Badve OP (2017) Taxonomy of DoS and DDoS attacks and desirable defense mechanism in a cloud computing environment. Neural Comput Appl 28(12):3655–3682

    Article  Google Scholar 

  31. Herath TC, Herath HSB, D’Arcy J (2020) Organizational adoption of information security solutions: An integrative lens based on innovation adoption and the technology- organization- environment framework. SIGMIS Database 51(2):12–35

    Article  Google Scholar 

  32. Hoang DT, Wang P, Niyato D, Hossain E (2017) Charging and discharging of plug-in electric vehicles (PEVs) in vehicle-to-grid (V2G) systems: A cyber insurance-based model. IEEE Access 5:732–754

    Article  Google Scholar 

  33. Holtan J (2001) Optimal insurance coverage under bonus-malus contracts. ASTIN Bulletin: The Journal of the IAA 31(1):175–186

    Article  MathSciNet  MATH  Google Scholar 

  34. Husák M, Komárková J, Bou-Harb E, Čeleda P (2019) Survey of attack projection, prediction, and forecasting in cyber security. IEEE Communications Surveys & Tutorials 21(1):640–660

    Article  Google Scholar 

  35. Khalili MM, Naghizadeh P, Liu M (2018) Designing cyber insurance policies: The role of pre-screening and security interdependence. IEEE Trans Inf Forensics Secur 13(9):2226–2239

    Article  Google Scholar 

  36. Kshetri N (2018) The economics of cyber-insurance. IT Professional 20(6):9–14

    Article  Google Scholar 

  37. Lemaire J (1995) Bonus-malus systems in automobile insurance, volume 19. Springer science & business media,

  38. Lu X, Niyato D, Jiang H, Wang P, Poor HV (2018) Cyber insurance for heterogeneous wireless networks. IEEE Commun Mag 56(6):21–27

    Article  Google Scholar 

  39. Lu X, Niyato D, Privault N, Jiang H, Wang P (2018) Managing physical layer security in wireless cellular networks: A cyber insurance approach. IEEE J Sel Areas Commun 36(7):1648–1661

    Article  Google Scholar 

  40. Maillart T, Sornette D (2010) Heavy-tailed distribution of cyber-risks. The European Physical Journal B 75(3):357–364

    Article  MATH  Google Scholar 

  41. Malavasi M, Peters GW, Shevchenko PV, Trück S, Jang J, Sofronov G (2022) Cyber risk frequency, severity and insurance viability. Insurance: Mathematics and Economics, 106: 90–114

  42. Marotta A, Martinelli F, Nanni S, Orlando A, Yautsiukhin A (2017) Cyber-insurance survey. Computer Science Review 24:35–61

    Article  Google Scholar 

  43. Morgan S (2020) Cybercrime to cost the world \$10.5 trillion annually by 2025. https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/. Accessed: 2021-02-04

  44. Moscadelli M (2004) The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee. Available at SSRN 557214,

  45. Moumeesri A, Pongsart T (2022) Bonus-malus premiums based on claim frequency and the size of claims. Risks 10(9):181

    Article  Google Scholar 

  46. Neuhaus W (1988) A bonus-malus system in automobile insurance. Insurance Math Econom 7(2):103–112

    Article  Google Scholar 

  47. Nurse JR, Axon L, Erola A, Agrafiotis I, Goldsmith M, Creese S (2020) The data that drives cyber insurance: A study into the underwriting and claims processes. In 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), pages 1–8,

  48. Oughton EJ, Ralph D, Pant R, Leverett E, Copic J, Thacker S, Dada R, Ruffle S, Tuveson M, Hall JW (2019) Stochastic counterfactual risk analysis for the vulnerability assessment of cyber-physical attacks on electricity distribution infrastructure networks. Risk Anal 39(9):2012–2031

    Article  Google Scholar 

  49. Pal R, Golubchik L (2010) Analyzing self-defense investments in internet security under cyber-insurance coverage. In 2010 IEEE 30th International Conference on Distributed Computing Systems, pages 339–347

  50. Pal R, Golubchik L, Psounis K, Hui P (2014) Will cyber-insurance improve network security? A market analysis. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, pages 235–243

  51. Pal R, Golubchik L, Psounis K, Hui P (2019) Security pricing as enabler of cyber-insurance a first look at differentiated pricing markets. IEEE Trans Dependable Secure Comput 16(2):358–372

    Article  Google Scholar 

  52. Paté-Cornell M, Kuypers M, Smith M, Keller P (2018) Cyber risk management for critical infrastructure: a risk analysis model and three case studies. Risk Anal 38(2):226–241

    Article  Google Scholar 

  53. Peters GW, Shevchenko PV (2015) Advances in heavy tailed risk modeling. Wiley Handbook in Financial Engineering and Econometrics. John Wiley & Sons, Inc., Hoboken, NJ. A handbook of operational risk

  54. Peters GW, Sisson SA (2006) Bayesian inference, Monte Carlo sampling and operational risk. Journal of Operational Risk 1(3):27–50

    Article  Google Scholar 

  55. Peters GW, Byrnes AD, Shevchenko PV (2011) Impact of insurance for operational risk: is it worthwhile to insure or be insured for severe losses? Insurance Math Econom 48(2):287–303

    Article  MathSciNet  MATH  Google Scholar 

  56. Peters GW, Chen WY, Gerlach RH (2016) Estimating quantile families of loss distributions for non-life insurance modelling via L-moments. Risks, 4 (2)

  57. Peters GW, Shevchenko PV, Cohen RD (2018a) Statistical machine learning analysis of cyber risk data: event case studies. In D. Maurice, J. Freund, and D. Fairman, editors, FinTech: Growth and Deregulation, chapter 3. Risk Books,

  58. Peters GW, Shevchenko PV, Cohen RD (2018b) Understanding cyber-risk and cyber-insurance. In D. Maurice, J. Freund, and D. Fairman, editors, FinTech: Growth and Deregulation, chapter 12. Risk Books,

  59. Peters GW, Malavasi M, Sofronov G, Shevchenko PV, Trück S, Jang J (2023) Cyber loss model risk translates to premium mispricing and risk sensitivity. The Geneva Papers on Risk and Insurance - Issues and Practice 48(2):372–433

    Article  Google Scholar 

  60. Ragulina O (2017) Bonus-malus systems with different claim types and varying deductibles. Modern Stochastics: Theory and Applications 4(2):141–159

    MathSciNet  MATH  Google Scholar 

  61. Rid T, McBurney P (2012) Cyber-weapons. The RUSI Journal 157(1):6–13

    Article  Google Scholar 

  62. Romanosky S, Ablon L, Kuehn A, Jones T (2019) Content analysis of cyber insurance policies: how do carriers price cyber risk? Journal of Cybersecurity, 5 (1), 02. tyz002

  63. Schwartz GA, Sastry SS (2014) Cyber-insurance framework for large scale interdependent networks. In Proceedings of the 3rd International Conference on High Confidence Networked Systems, HiCoNS ’14, page 145-154, New York, NY, USA, Association for Computing Machinery

  64. Shetty N, Schwartz G, Felegyhazi M, Walrand J (2010) Competitive cyber-insurance and internet security. In: Moore T, Pym D, Ioannidis C (eds) Economics of Information Security and Privacy. Springer, US, Boston, MA, pp 229–247

    Chapter  Google Scholar 

  65. Shevchenko P, Peters G (2013) Loss distribution approach for operational risk capital modelling under Basel II: Combining different data sources for risk estimation. Journal of Governance and Regulation 2:33–57

    Article  Google Scholar 

  66. Shevchenko PV, Jang J, Malavasi M, Peters GW, Sofronov G, Trück S (2023) The nature of losses from cyber-related events: Risk categories and business sectors. Journal of Cybersecurity, to appear

  67. Tailor JP, Patel AD (2017) A comprehensive survey: ransomware attacks prevention, monitoring and damage control. International Journal of Scientific Research, 4: 2321–2705, 06

  68. Targino RS, Peters GW, Sofronov G, Shevchenko PV (2013) Optimal insurance purchase strategies via optimal multiple stopping times. Preprint, arXiv:1312.0424

  69. Tukey JW (1977) Exploratory data analysis, vol 2. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  70. Tzougas G, Vrontos S, Frangos N (2018) Bonus-malus systems with two-component mixture models arising from different parametric families. North American Actuarial Journal 22(1):55–91

    Article  MathSciNet  MATH  Google Scholar 

  71. von Skarczinski BS, Dreissigacker A, Teuteberg F (2022) More security, less harm? Exploring the link between security measures and direct costs of cyber incidents within firms using PLS-PM. In Wirtschaftsinformatik 2022 Proceedings. URL https://aisel.aisnet.org/wi2022/it_strategy/it_strategy/2

  72. Wheatley S, Maillart T, Sornette D (2016) The extreme risk of personal data breaches and the erosion of privacy. The European Physical Journal B 89(1):1–12

    Article  Google Scholar 

  73. Woods DW, Böhme R (2021) SoK: Quantifying cyber risk. In 2021 IEEE Symposium on Security and Privacy (SP), pages 211–228,

  74. Xu M, Hua L (2019) Cybersecurity insurance: Modeling and pricing. North American Actuarial Journal 23(2):220–249

    Article  MathSciNet  MATH  Google Scholar 

  75. Xu Y, Iglewicz B, Chervoneva I (2014) Robust estimation of the parameters of g-and-h distributions, with applications to outlier detection. Computational Statistics & Data Analysis 75:66–80

    Article  MathSciNet  MATH  Google Scholar 

  76. Yang Z, Lui JC (2014) Security adoption and influence of cyber-insurance markets in heterogeneous networks. Perform Eval 74:1–17

    Article  Google Scholar 

  77. Young A, Yung M (1996) Cryptovirology: extortion-based security threats and countermeasures. In Proceedings 1996 IEEE Symposium on Security and Privacy, pages 129–140

  78. Zängerle D, Schiereck D (2023) Modelling and predicting enterprise-level cyber risks in the context of sparse data availability. The Geneva Papers on Risk and Insurance - Issues and Practice 48(2):434–462

    Article  Google Scholar 

  79. Zeller G, Scherer M (2022) A comprehensive model for cyber risk based on marked point processes and its application to insurance. Eur Actuar J 12(1):33–85

    Article  MathSciNet  MATH  Google Scholar 

  80. Zhang R, Zhu Q (2018) Optimal cyber-insurance contract design for dynamic risk management and mitigation. Preprint arXiv:1804.00998

  81. Zhang R, Zhu Q, Hayel Y (2017) A bi-level game approach to attack-aware cyber insurance of computer networks. IEEE J Sel Areas Commun 35(3):779–794

    Article  Google Scholar 

Download references

Acknowledgements

Ariel Neufeld gratefully acknowledges the financial support by his Nanyang Assistant Professorship Grant (NAP Grant) Machine Learning based Algorithms in Finance and Insurance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Neufeld.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proofs

Proofs

Proof of Theorem 4.1

In this proof, we apply the dynamic programming principle and perform backward induction in time to show the optimality of \(\pi ^\star \). First, one may check that \(d^\star _t,\iota ^\star _t\) are \(\mathcal {F}_{t-1}\)-measurable, \(j^\star _t\) is \(\mathcal {F}_t\)-measurable, and \({\{\iota ^\star _t=0,j^\star _t=1\}=\emptyset }\) for \(t=1,\ldots ,T\). Thus, indeed \(\pi ^\star \in \Pi \). For all \(\pi =(d_s,\iota _s,j_s)_{s=1:T}\in \Pi \) and \(t\in \{0,\ldots ,T\}\), let us define \(O_t(\pi )=(\widetilde{d}_s,\widetilde{\iota }_s,\widetilde{j}_s)_{s=1:T}\in \Pi \) as follows:

$$\begin{aligned} \begin{aligned}&\big (b^{O_t(\pi )}_{0},i^{O_t(\pi )}_{0}\big ):=(0,\textrm{no}),\\ \text {for each }s&=1,\ldots ,t, \text { let:}\\&\widetilde{d}_s=d_s,\hspace{2.92cm}\widetilde{\iota }_s=\iota _s, \hspace{2.92cm}\widetilde{j}_s=j_s,\\ \text {for each }s&=t+1,\ldots ,T, \text { let:}\\&\widetilde{d}_s=\widehat{d}_s\big (b_{s-1}^{O_t(\pi )},i_{s-1}^{O_t(\pi )}\big ),\quad \quad \widetilde{\iota }_s=\widehat{\iota }_s\big (b_{s-1}^{O_t(\pi )},i_{s-1}^{O_t(\pi )}\big ),\\&\widetilde{j}_s=\widehat{j}_s\big (b_{s-1}^{O_t(\pi )},i_{s-1}^{O_t(\pi )},W_s\big ). \end{aligned} \end{aligned}$$
(26)

By the definition above, one may check that \(O_t(\pi )\in \Pi \) for all \(\pi \in \Pi \) and \(t=0,\ldots ,T\). In particular, when \(t=0\), (26) implies that \(O_0(\pi )=\pi ^\star \) for all \(\pi \in \Pi \). In addition, notice that \(O_{t+s}\big (O_t(\pi )\big )=O_t(\pi )\) for all \(\pi \in \Pi \) and \(s\ge 0\).

Next, we prove the following statement by induction:

$$\begin{aligned} \begin{aligned} \text {for all }t=0,\ldots ,T,\quad \mathcal {V}_t\big (b_{t}^{O_t(\pi )},i_{t}^{O_t(\pi )}\big )=V^{O_t(\pi )}_t\le V^\pi _t\quad \mathbb {P}\text {-a.s. for all }\pi \in \Pi . \end{aligned} \end{aligned}$$
(27)

To begin, we have by definition that \(O_T(\pi )=\pi \) and \(\mathcal {V}_T(b^{\pi }_{T},i^{\pi }_{T})=V^{\pi }_T=0\) \(\mathbb {P}\)-a.s. for all \(\pi \in \Pi \). Hence, (27) holds when \(t=T\). Now, let us suppose that for some \(t\in \{1,\ldots ,T\}\), it holds that \(\mathcal {V}_t\big (b_{t}^{O_t(\pi )},i_{t}^{O_t(\pi )}\big )=V^{O_t(\pi )}_t\le V^\pi _t\) \(\mathbb {P}\)-a.s. for all \(\pi \in \Pi \). Let \(\pi =(d_s,\iota _s,j_s)_{s=1:T}\in \Pi \) be arbitrary and let \(O_{t-1}(\pi ):=(\widetilde{d}_s,\widetilde{\iota }_s,\widetilde{j}_s)_{s=1:T}\in \Pi \). Note that (12) ensures that for every \(b\in \mathcal {B},i\in \mathcal {I},w\in \mathcal {W}\),

$$\begin{aligned} \begin{aligned}&g_t(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,w),w) +\mathcal {V}_t\big (f_t(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,w),w)\big )\\&\quad =\min _{j\in \{0,1\}}\Big \{g_t(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),j,w) +\mathcal {V}_t\big (f_t(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),j,w)\big )\Big \}. \end{aligned} \end{aligned}$$
(28)

Combining (28) with the definition of \(\widehat{d}_t\) and \(\widehat{\iota }_t\) in (11), one can show that for all \(b\in \mathcal {B}\), \(i\in \mathcal {I}\), \(d\in \mathcal {D}\), \(\iota \in \{0,1\}\), and \(\mathfrak {B}(\mathcal {W})\)-measurable \(j:\mathcal {W}\rightarrow \{0,1\}\), it holds that

$$\begin{aligned} \begin{aligned}&\mathcal {V}_{t-1}(b,i)\\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,W_t),W_t)\\&\quad +\mathcal {V}_{t}\big (f_{t}(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,W_t),W_t)\big )\bigg ]\\&\quad \le e^{-r}\mathbb {E}\bigg [g_{t}(b,i,d,\iota ,j(W_t),W_t)+\mathcal {V}_{t}\big (f_{t}(b,i,d,\iota ,j(W_t),W_t)\big )\bigg ]. \end{aligned} \end{aligned}$$
(29)

By (29), (26), the independence between \(\mathcal {F}_{t-1}\) and \(\sigma (W_t)\), and the induction hypothesis, it holds \(\mathbb {P}\)-a.s. that

$$\begin{aligned}&\mathcal {V}_{t-1}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}\big )\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,W_t),W_t)\nonumber \\&\qquad +\mathcal {V}_{t}\big (f_{t}(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,W_t),W_t) \big )\bigg ]\bigg |_{\begin{array}{c} b=b^{O_{t-1}(\pi )}_{t-1},\;i=i^{O_{t-1}(\pi )}_{t-1} \end{array}}\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}, \widehat{d}_t(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}), \widehat{\iota }_t(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}),\nonumber \\&\qquad \widehat{j}_t(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},W_t),W_t) +\mathcal {V}_{t}\big (f_{t}(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},\widehat{d}_t(b^{O_{t-1} (\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}),\nonumber \\&\qquad \widehat{\iota }_t(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}), \widehat{j}_t(b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},W_t),W_t)\big )\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}, \widetilde{d}_t,\widetilde{\iota }_t,\widetilde{j}_t,W_t\big )\nonumber \\&\quad +\mathcal {V}_{t}\big (f_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},\widetilde{d}_t, \widetilde{\iota }_t,\widetilde{j}_t,W_t\big )\big )\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}, \widetilde{d}_t,\widetilde{\iota }_t,\widetilde{j}_t,W_t\big ) +\mathcal {V}_{t}\big (b^{O_t(O_{t-1}(\pi ))}_{t},i^{O_t(O_{t-1}(\pi ))}_{t}\big )\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}, \widetilde{d}_t,\widetilde{\iota }_t,\widetilde{j}_t,W_t\big )+V^{O_{t-1}(\pi )}_{t}\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad =V^{O_{t-1}(\pi )}_{t-1}. \end{aligned}$$
(30)

Now, let \(\pi =(d_s,\iota _s,j_s)_{s=1:T}\in \Pi \) be arbitrary and let \(O_{t-1}(\pi ):=(\widetilde{d}_s,\widetilde{\iota }_s,\widetilde{j}_s)_{s=1:T}\in \Pi \). By (26), we have

$$\begin{aligned} \big (b^\pi _{t-1},i^\pi _{t-1}\big )=\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}\big ) =\big (b^{O_t(\pi )}_{t-1},i^{O_t(\pi )}_{t-1}\big )\quad \mathbb {P}\text {-a.s.} \end{aligned}$$
(31)

By (30), (28), (31), the independence between \(\mathcal {F}_{t-1}\) and \(\sigma (W_t)\), and the induction hypothesis, it holds \(\mathbb {P}\)-a.s. that

$$\begin{aligned}&V^{O_{t-1}(\pi )}_{t-1}\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [\min _{j\in \{0,1\}}\Big \{g_{t}(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),j,W_t)\nonumber \\&\qquad +\mathcal {V}_{t}\big (f_{t}(b,i,\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),j,W_t)\big )\Big \}\bigg ] \bigg |_{\begin{array}{c} b=b^{O_{t-1}(\pi )}_{t-1},\;i=i^{O_{t-1}(\pi )}_{t-1} \end{array}}\nonumber \\&\quad \le e^{-r}\mathbb {E}\bigg [\min _{j\in \{0,1\}}\Big \{g_{t}(b,i,d_t,\iota _t,j,W_t) +\mathcal {V}_{t}\big (f_{t}(b,i,d_t,\iota _t,j,W_t)\big )\Big \}\bigg ]\bigg |_{\begin{array}{c} b=b^{O_{t-1} (\pi )}_{t-1},\;i=i^{O_{t-1}(\pi )}_{t-1} \end{array}}\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [\min _{j\in \{0,1\}}\Big \{g_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1}, d_t,\iota _t,j,W_t\big )\nonumber \\&\qquad +\mathcal {V}_{t}\big (f_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},d_t, \iota _t,j,W_t\big )\big )\Big \}\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad \le e^{-r}\mathbb {E}\bigg [g_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},{d}_t,{\iota }_t, {j}_t,W_t\big )\nonumber \\&\qquad +\mathcal {V}_{t}\big (f_{t}\big (b^{O_{t-1}(\pi )}_{t-1},i^{O_{t-1}(\pi )}_{t-1},{d}_t,{\iota }_t,{j}_t,W_t\big ) \big )\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad =e^{-r}\mathbb {E}\bigg [g_{t}\big (b^{\pi }_{t-1},i^{\pi }_{t-1},{d}_t,{\iota }_t,{j}_t,W_t\big )+\mathcal {V}_{t} \big (b^{O_t(\pi )}_{t},i^{O_t(\pi )}_{t}\big )\bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad \le e^{-r}\mathbb {E}\bigg [g_{t}\big (b^{\pi }_{t-1},i^{\pi }_{t-1},{d}_t,{\iota }_t,{j}_t,W_t\big )+V_t^{\pi } \bigg |\mathcal {F}_{t-1}\bigg ]\nonumber \\&\quad =V_{t-1}^{\pi }. \end{aligned}$$
(32)

Combining (30) and (32), we have shown that \(\mathcal {V}_{t-1}\big (b_{t-1}^{O_{t-1}(\pi )},i_{t-1}^{O_{t-1}(\pi )}\big )=V^{O_{t-1}(\pi )}_{t-1}\le V^\pi _{t-1}\) \(\mathbb {P}\)-a.s. for all \(\pi \in \Pi \). By induction, (27) holds for \(t=0\). Hence, \(\mathcal {V}_0\big (b^{\pi ^\star }_0,i^{\pi ^\star }_0\big )=V^{\pi ^\star }_0\le V^{\pi }_0\) for all \(\pi \in \Pi \). Since \((b^{\pi ^\star }_0,i^{\pi ^\star }_0\big )=(0,\textrm{no})\), we have \(\mathcal {V}_0\big (b^{\pi ^\star }_0,i^{\pi ^\star }_0\big )=V^{\pi ^\star }_0=\inf _{\pi \in \Pi }V^{\pi }_0=\mathbb {V}_0\). The proof is now complete. \(\square \)

Proof of Theorem 4.4

To prove statement (i), it suffices to show that Claim 1 and Claim 2 in Remark 4.3 hold true. If these two claims hold, then one can verify that \(\widehat{d}_t(b,i),\widehat{\iota }_t(b,i),\widehat{j}_t(b,i,w)\) defined on Line 11 and Line 12 coincide with the definitions (11) and (12), and thus statement (i) holds as a consequence of Theorem 4.1. In Claim 1, by (5) and (6), it holds that

$$\begin{aligned} \begin{aligned}&g_{t}(b,i,d,1,1,w)+\mathcal {V}_{t}\big (f_{t}(b,i,d,1,1,w)\big )\\&\quad<g_{t}(b,i,d,1,0,w)+\mathcal {V}_{t}\big (f_{t}(b,i,d,1,0,w)\big )\\&\quad \Updownarrow \\&\quad \mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,w)),\textrm{on}\big )-\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,w)) <\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,0),\textrm{on}\big ). \end{aligned} \end{aligned}$$
(33)

Observe that, by the definitions of \(\underline{b},\overline{b}\) on Line 4 and the definition of \(\alpha _t(b,b')\) on Line 7, we have

$$\begin{aligned} \begin{aligned}&\Big \{c\in \mathbb {R}_+:\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,c),\textrm{on}\big ) -c<\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,0),\textrm{on}\big )\Big \}\\&\quad =\bigcup _{\underline{b}\le b'\le \overline{b}}\Big \{c\in \mathbb {R}_+:\mathcal {B}\mathcal {M}(b,c) =b',c>\mathcal {V}_{t}(b',\textrm{on})-\mathcal {V}_{t}(\underline{b},\textrm{on})\Big \}\\&\quad =\bigcup _{\underline{b}\le b'\le \overline{b}}\mathcal {L}_t(b,b'). \end{aligned} \end{aligned}$$
(34)

Hence, Claim 1 holds true. In Claim 2, in the case where \(\iota =1\), we have, by (5) and (6), that

$$\begin{aligned} \begin{aligned}&\mathbb {E}\bigg [\min _{j\in \{0,1\}}\Big \{g_{t}(b,i,d,\iota ,j,W_t)+\mathcal {V}_{t} \big (f_{t}(b,i,d,\iota ,j,W_t)\big )\Big \}\bigg ]\\&\quad =\mathbb {E}\Big [\beta (d)+\iota p^{\mathcal {B}\mathcal {M}}(b,t)+\delta _{\textrm{in}}(t)\mathbbm {1}_{\{i=\textrm{no},\iota =1\}} +\delta _{\textrm{out}}(t)\mathbbm {1}_{\{i=\textrm{on},\iota =0\}}\\&\qquad +\delta _{\textrm{re}} \mathbbm {1}_{\{i\ne \textrm{on},i\ne \textrm{no},\iota =1\}}+L(d,W_t)\Big ]\\&\qquad +\mathbb {E}\bigg [\min _{j\in \{0,1\}}\Big \{\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,j\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))), \textrm{on}\big )-\iota j\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))\Big \}\bigg ]\\&\quad =\beta (d)+\iota p^{\mathcal {B}\mathcal {M}}(b,t)+\delta _{\textrm{in}}(t)\mathbbm {1}_{\{i=\textrm{no},\iota =1\}} +\delta _{\textrm{out}}(t)\mathbbm {1}_{\{i=\textrm{on},\iota =0\}}\\&\qquad +\delta _{\textrm{re}} \mathbbm {1}_{\{i\ne \textrm{on},i\ne \textrm{no},\iota =1\}}+\mathbb {E}\big [L(d,W_t)\big ]\\&\qquad +\mathbb {E}\Big [\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,0),\textrm{on}\big ) \wedge \Big (\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))),\textrm{on}\big )\\&\qquad -\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))\Big )\Big ]. \end{aligned} \end{aligned}$$
(35)

Moreover, by the definition of \(H_t(b,i,d,\iota )\) on Line 9, the definitions of \(\underline{b},\overline{b}\) on Line 4, and the definition of \(\alpha _t(b,b')\) on Line 7, we have

$$\begin{aligned}&\mathbb {E}\Big [\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,0),\textrm{on}\big ) \wedge \Big (\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))), \textrm{on}\big )\nonumber \\&\qquad -\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))\Big )\Big ]\nonumber \\&\quad =\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,0),\textrm{on}\big )\nonumber \\&\qquad -\mathbb {E}\bigg [\Big (\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))-\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))), \textrm{on}\big )\nonumber \\&\qquad +\mathcal {V}_{t}\big (\mathcal {B}\mathcal {M}(b,0),\textrm{on}\big )\Big )^+\bigg ]\nonumber \\&\quad =\mathcal {V}_{t}(\underline{b},\textrm{on})\nonumber \\&\qquad -\sum _{\underline{b}\le b'\le \overline{b}}\mathbb {E}\bigg [\mathbbm {1}_{\{\mathcal {B}\mathcal {M}(b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t)))=b'\}} \Big (\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d,W_t))\nonumber \\&\qquad -\big [\mathcal {V}_{t}(b',\textrm{on})-\mathcal {V}_{t}(\underline{b},\textrm{on})\big ]\Big )^+\bigg ]\nonumber \\&\quad =H_t(b,i,d,1). \end{aligned}$$
(36)

In the case where \(\iota =0\), Claim 2 follows directly from (5) and (6). Thus, Claim 2 holds true.

Now, let us prove statement (ii). Let \((b,i)\in \mathcal {B}\times \mathcal {I}\) be fixed, let \(\underline{b},\overline{b}\) be defined by Line 4, and let \(\mathcal {L}_t(b,b')\) be defined by Line 7. It follows from (5) that, if \(\widehat{\iota }_t(b,i)=0\), then

$$\begin{aligned} \mathbb {P}\big [\big (b^{\pi ^\star }_{t},i^{\pi ^\star }_{t}\big )=\mathcal {B}\mathcal {M}_0(b,i)\big |b^{\pi ^\star }_{t-1} =b,i^{\pi ^\star }_{t-1}=i\big ]=1=P^\star _t\big [(b,i)\rightarrow \mathcal {B}\mathcal {M}_0(b,i)\big ], \end{aligned}$$

thus showing the correctness of Line 20. Now, suppose that \(\widehat{\iota }_t(b,i)=1\). Then, by (5), we have that \(\mathbb {P}\big [i^{\pi ^\star }_{t}=\textrm{on}\big |b^{\pi ^\star }_{t-1}=b,i^{\pi ^\star }_{t-1}=i\big ]=1\). Let us first examine the case where \(b'\ne \underline{b}\). We then have

$$\begin{aligned}&\Big \{\big (b^{\pi ^\star }_{t},i^{\pi ^\star }_{t}\big )=(b',\textrm{on}), \big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )=(b,i) \Big \}\\&\quad =\Big \{\mathcal {B}\mathcal {M}\Big (b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(d^\star _t,W_t))\Big )=b'\Big \}\\&\qquad \cap \big \{j^\star _t=1\big \} \cap \Big \{\big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )=(b,i)\Big \}\\&\quad =\Big \{\mathcal {B}\mathcal {M}\Big (b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(\widehat{d}_t(b,i),W_t))\Big )=b'\Big \}\\&\qquad \cap \Big \{\widehat{j}_t(b,i,W_t)=1\Big \}\cap \Big \{\big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big ) =(b,i)\Big \}\\&\quad =\Big \{\mathcal {B}\mathcal {M}\Big (b,\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(\widehat{d}_t(b,i),W_t))\Big )=b'\Big \}\\&\qquad \cap \Big \{\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(\widehat{d}_t(b,i),W_t))\in \textstyle \bigcup _{\underline{b}\le b''\le \overline{b}}\mathcal {L}_t(b,b'')\Big \} \\&\qquad \cap \Big \{\big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )=(b,i)\Big \}\\&\quad =\Big \{\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(\widehat{d}_t(b,i),W_t))\in \mathcal {L}_t(b,b')\Big \} \cap \Big \{\big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )=(b,i)\Big \}, \end{aligned}$$

where the first equality is by (5), the second equality is by (13), the third equality is by Claim 1 in Remark 4.3, and the last equality is by Line 7 and the property that \(\{\mathcal {L}_t(b,b''):\underline{b}\le b''\le \overline{b}\}\) are disjoint sets. Therefore, since \(\big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )\) and \(W_t\) are independent, we have for any \(b'\ne \underline{b}\) that

$$\begin{aligned}&\mathbb {P}\Big [b^{\pi ^\star }_{t}=b',i^{\pi ^\star }_{t}=\textrm{on},b^{\pi ^\star }_{t-1} =b,i^{\pi ^\star }_{t-1}=i\Big ]\\&\quad =\mathbb {P}\Big [\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(\widehat{d}_t(b,i),W_t)) \in \mathcal {L}_t(b,b')\Big ]\mathbb {P}\Big [b^{\pi ^\star }_{t-1}=b,i^{\pi ^\star }_{t-1}=i\Big ]. \end{aligned}$$

Hence, by Line 17,

$$\begin{aligned}&\mathbb {P}\Big [b^{\pi ^\star }_{t}=b',i^{\pi ^\star }_{t}=\textrm{on}\Big |b^{\pi ^\star }_{t-1} =b,i^{\pi ^\star }_{t-1}=i\Big ]\\&\quad =\mathbb {P}\Big [\lambda ^{\mathcal {B}\mathcal {M}}(b,t,L(\widehat{d}_t(b,i),W_t)) \in \mathcal {L}_t(b,b')\Big ]\\&\quad =P^\star _t\big [(b,i)\rightarrow (b',\textrm{on})\big ]. \end{aligned}$$

The remaining case where \(b'=\underline{b}\) follows from

$$\begin{aligned}&\mathbb {P}\Big [\big (b^{\pi ^\star }_{t},i^{\pi ^\star }_{t}\big )=(\underline{b},\textrm{on})\Big | \big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )=(b,i)\Big ]\\&\quad =1-\sum _{\underline{b}<b'\le \overline{b}}\mathbb {P}\Big [\big (b^{\pi ^\star }_{t},i^{\pi ^\star }_{t}\big ) =(b',\textrm{on})\Big |\big (b^{\pi ^\star }_{t-1},i^{\pi ^\star }_{t-1}\big )=(b,i)\Big ]\\&\quad =1-\sum _{\underline{b}<b'\le \overline{b}}P^\star _t\big [(b,i)\rightarrow (b',\textrm{on})\big ]\\&\quad =P^\star _t\big [(b,i)\rightarrow (\underline{b},\textrm{on})\big ], \end{aligned}$$

thus verifying the correctness of Line 18. The correctness of Line 21 and Line 23 follows from the definition that \(\big (b^{\pi ^\star }_{0},i^{\pi ^\star }_{0}\big )=(0,\textrm{no})\) and basic properties of a finite state Markov chain. The proof of statement (ii) is complete.

Finally, statement (iii) also follows from the basic properties of a finite state Markov chain. The proof is complete. \(\square \)

Proof of Lemma 5.2

Statement (i) follows by checking the following:

$$\begin{aligned} \begin{aligned} F_{X}(x)=\mathbb {P}[\widetilde{X}\le x|\widetilde{X}>0]=\frac{\mathbb {P}[0<\widetilde{X}\le x]}{\mathbb {P}[\widetilde{X}>0]}={\left\{ \begin{array}{ll} \frac{F_{\widetilde{X}}(x)-F_{\widetilde{X}}(0)}{1-F_{\widetilde{X}}(0)} &{} \text {if }x>0,\\ 0 &{} \text {if }x\le 0. \end{array}\right. } \end{aligned} \end{aligned}$$

Statement (ii) can be verified directly by checking that \(\mathbb {P}[X_U\le x]=F_X(x)\) for all \(x\in \mathbb {R}\).

Finally, statement (iii) can be derived from (23) as follows:

$$\begin{aligned}&\mathbb {E}\big [(X-\gamma )^+\big ]=\int _{\gamma }^{\infty }(x-\gamma ) \,{F_{X}}\!\left( {\textrm{d}x}\right) \!\\&\quad =\frac{1}{1-F_{\widetilde{X}}(0)}\left[ \int _{\gamma }^{\infty }x\,{F_{\widetilde{X}}}\!\left( {\textrm{d}x}\right) \! -\gamma (1-F_{\widetilde{X}}(\gamma ))\right] \\&\quad =\frac{\varsigma }{1-F_{\widetilde{X}}(0)}\int _{Y_{g,h}^{-1}\left( \frac{\gamma -\mu }{\varsigma }\right) }^{\infty }Y_{g,h}(z)\,{\Phi }\!\left( {\textrm{d}z}\right) \!+\frac{(\mu -\gamma )(1-F_{\widetilde{X}} (\gamma ))}{1-F_{\widetilde{X}}(0)}\\&\quad =\frac{\varsigma }{1-F_{\widetilde{X}}(0)}\frac{1}{g}\int _{Y_{g,h}^{-1} \left( \frac{\gamma -\mu }{\varsigma }\right) }^{\infty }(\exp (gz)-1)\exp \left( \frac{hz^2}{2}\right) \frac{1}{\sqrt{2\pi }}\exp \left( -\frac{z^2}{2}\right) \,\textrm{d}{z}\\&\qquad +\frac{(\mu -\gamma )(1-F_{\widetilde{X}} (\gamma ))}{1-F_{\widetilde{X}}(0)}\\&\quad =\frac{\varsigma }{1-F_{\widetilde{X}}(0)}\frac{1}{g\sqrt{2\pi }}\Bigg [\int _{Y_{g,h}^{-1} \left( \frac{\gamma -\mu }{\varsigma }\right) }^{\infty }\exp \left( -\frac{(1-h)z^2}{2}+gz\right) -\exp \left( -\frac{(1-h)z^2}{2}\right) \,\textrm{d}{z}\Bigg ]\\&\qquad +\frac{(\mu -\gamma )(1-F_{\widetilde{X}}(\gamma ))}{1-F_{\widetilde{X}}(0)}\\&\quad =\frac{\varsigma }{1-F_{\widetilde{X}}(0)}\frac{1}{g\sqrt{2\pi }}\Bigg [\int _{Y_{g,h}^{-1} \left( \frac{\gamma -\mu }{\varsigma }\right) }^{\infty }\exp \left( \frac{g^2}{2(1-h)}\right) \exp \left( -\frac{(1-h)}{2}\left( z-\frac{g}{1-h}\right) ^2\right) \,\textrm{d}{z}\\&\qquad -\int _{Y_{g,h}^{-1} \left( \frac{\gamma -\mu }{\varsigma }\right) }^{\infty }\exp \left( -\frac{(1-h)z^2}{2}\right) \textrm{d}{z}\Bigg ] +\frac{(\mu -\gamma )(1-F_{\widetilde{X}}(\gamma ))}{1-F_{\widetilde{X}}(0)}\\&\quad =\frac{\varsigma }{(1-F_{\widetilde{X}}(0))g\sqrt{1-h}}\Bigg [\exp \left( \frac{g^2}{2(1-h)}\right) \Phi \left( \left( \frac{g}{1-h}-Y_{g,h}^{-1}\left( \tfrac{\gamma -\mu }{\varsigma }\right) \right) \sqrt{1-h}\right) \\&\qquad -\Phi \left( -Y_{g,h}^{-1}\left( \tfrac{\gamma -\mu }{\varsigma }\right) \sqrt{1-h}\right) \Bigg ]+\frac{(\mu -\gamma )(1-F_{\widetilde{X}}(\gamma ))}{1-F_{\widetilde{X}}(0)}, \end{aligned}$$

where the last equality is obtained by noticing that both integrals are Gaussian integrals after a change of variable. The proof is now complete. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Q., Neufeld, A., Peters, G.W. et al. A Bonus-Malus framework for cyber risk insurance and optimal cybersecurity provisioning. Eur. Actuar. J. (2023). https://doi.org/10.1007/s13385-023-00366-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13385-023-00366-0

Keywords

Navigation