Skip to main content
Log in

A compound trend renewal model for medical/professional liabilities

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

A compound trend renewal model for the aggregate discounted indemnities and expenses assumed by the insurer is proposed for various coverages of medical/professional liabilities, where the real interest rates could be stochastic and where there is a possible dependence between the indemnities, the expenses and the delay before the claim’s settlement. In this paper, we get analytic formulas for the first raw and joint moments of this risk process for three insurance products. Then we calibrate our model on a real database and compare these various insurance products through the preceding quantities, by numerical calculations, and through some risk measures such as the VaR and TVaR, using simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. See https://apps.fldfs.com/PLCR/Search/MPLClaim.aspx.

  2. Direct written premiums: the amount of the premiums that have been collected, before deducting any premiums sent to reinsurers.

  3. http://www.leg.state.fl.us/statutes/index.cfm?App_mode=Display_Statute&URL=0700-0799/0766/0766ContentsIndex.html&StatuteYear=2016&Title=-%3E2016-%3EChapter%20766

  4. http://www.atra.org/issues/medical-liability-reform

  5. Take note that we have to deflate the observed indemnity paid and expenses before applying the EM algorithm.

References

  1. Bates R, Kezirian P, Winch T (2004) Claims-paid policy offers risk retention groups a way to assess insurance costs on a real time basis. Risk Retent Rep 18(1):1–2

    Google Scholar 

  2. Black B, Silver C, Hyman DA, Sage WM (2008) Defense costs and insurer reserves in medical malpractice and other personal injury cases: evidence from Texas, 1988–2004. Am Law Econ Rev 10:185–245

    Article  Google Scholar 

  3. Bingham KM (2005) Important considerations when analyzing closed claim databases. American Academy of Actuaries Medical Malpractice Subcommittee Comment letter. http://www.actuary.org/pdf/casualty/medmal_042005.pdf. Accessed 23 Oct 2014

  4. Bratley P, Fox BL (1988) Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans Math Softw 14:88–100

    Article  MATH  Google Scholar 

  5. Clarke FS (2009) Medical malpractice liability: Canada. http://www.loc.gov/law/help/medical-malpractice-liability/canada.php. Accessed 11 July 2013

  6. Fleeter TB (2011) Worldwide trends in medical liability. American Academy of Orthopaedic Surgeons (AAOS). http://www.aaos.org/news/aaosnow/sep11/managing4.asp. Accessed 4 Oct 2014

  7. Forray SF (2010) Reserving for extended reporting endorsement coverage, including the death, disability, and retirement policy provision. http://www.casact.org/pubs/forum/10fforum/Forray.pdf. Accessed 11 July 2013

  8. Gamiz ML, Lindqvist BH (2016) Nonparametric estimation in trend-renewal processes. Reliab Eng Syst Saf 145:38–46

    Article  Google Scholar 

  9. GAO (General Accounting Office) (2003) Multiple factors have contributed to increased premium rates. Report to congressional requesters. United States of America

  10. Gourieroux C, Monfort A, Trognon A (1984) Pseudo maximum likelihood methods: theory. Econometrica 52(3):681–700

    Article  MathSciNet  MATH  Google Scholar 

  11. Hahn T (2005) CUBA—a library for multidimensional numerical integration. Comput Phys Commun 168:78–95

    Article  MathSciNet  MATH  Google Scholar 

  12. Hogg RV, McKean JW, Craig AT (2005) Introduction to mathematical statistics, 6th edn. Pearson Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  13. Joe S, Kuo FY (1998) Remark on algorithm 659: implementing Sobol’s quasi random sequence generator. ACM Trans Math Softw (TOMS) 29:49–57

    Article  MATH  Google Scholar 

  14. Léveillé G, Adékambi F (2012) Joint moments of discounted renewal sums. Scand Actuar J 1:40–55

    Article  MathSciNet  MATH  Google Scholar 

  15. Léveillé G, Hamel E (2013) A renewal model for medical malpractice. Eur Actuar J 3:471–490

    Article  MathSciNet  MATH  Google Scholar 

  16. Lindqvist BH, Elvebakk G, Heggland K (2003) The trend renewal process for statistical analysis of repairable systems. Technometrics 45(1):31–44

    Article  MathSciNet  Google Scholar 

  17. Rabehaisaina L, Woo JK (2016) On a multivariate renewal-reward process involving time delays: applications to IBNR process and infinite server queues. arXiv preprint arXiv:1611.10202

  18. Woo JK (2016) On multivariate discounted renewal sums with time-dependent claims in the presence of reporting/payment delays. Insur Math Econ 70:354–363

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their helpful comments and suggestions which enhanced the content of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghislain Léveillé.

Appendix A

Appendix A

Proof of Theorem 2.1

We condition both sums, \( Z_{1} (t) \) and \( Z_{2} (t) \), on \( N(t) \) and use Lemma 2.1 by following the same steps as described in Léveillé and Hamel [15].Hence, if we let \( W_{k,i} = X_{k} 1_{{\{ 1\} }} (i) + Y_{k} 1_{{\{ 2\} }} (i) \) and \( W_{i} = X1_{{\{ 1\} }} (i) + Y1_{{\{ 2\} }} (i) \), we obtain

$$ \begin{aligned} & E\left[ {E\left[ {\left. {Z_{i} (t)} \right|N(t)} \right]} \right] \\ & \quad = \sum\limits_{n = 1}^{\infty } {\sum\limits_{k = 1}^{\infty } {E\left[ {\left. {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{i} (T_{k} + \xi_{k} + \zeta_{k} )W_{k,i} } \right|N(t) = n} \right]P(N(t) = n)} } \\ & \quad = \sum\limits_{n = 1}^{\infty } {\sum\limits_{k = 1}^{\infty } {\int\limits_{0}^{t} {E\left[ {\left. {I(u,\xi_{k} ,\zeta_{k} ,t)D_{i} \left( {u + \xi_{k} + \zeta_{k} } \right)W_{k,i} } \right|N(t) = n} \right]dF_{{\left. {T_{k} } \right|N(t) = n}} (u)} P(N(t) = n)} } \\ & \quad = \sum\limits_{k = 1}^{\infty } {\sum\limits_{n = k}^{\infty } {\int\limits_{0}^{t} {E[I(u,\xi_{k} ,\zeta_{k} ,t)D_{i} (u + \xi_{k} + \zeta_{k} )W_{k,i} ]P(\tilde{N}(\varLambda (t) - \varLambda (u)) = n - k)dF^{*k} } (\varLambda (u))} } \\ & \quad = \sum\limits_{k = 1}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {I(u,v,w,t)E[D_{i} (u + v + w)]E\left[ {\left. {W_{k,i} } \right|\zeta = w} \right]dF_{\xi } (v)dF_{\zeta } (w)dF^{*k} (\varLambda (u))} } } } \\ & \quad = \int\limits_{0}^{\infty } {E\left[ {\left. {W_{i} } \right|\zeta = w} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {I(u,v,w,t)E[D_{i} (u + v + w)]d\tilde{m}(\varLambda (u))dF_{\xi } (v)dF_{\zeta } (w)} } } . \\ \end{aligned} $$

The result follows by adding both conditional expectations. \( \square \)

Proof of Theorem 2.2

First we multiply the sums between them, then we separate each term in a suitable way, i.e. for indices \( k = j \), \( \;k < j \) and \( k > j \). Hence, we get the following expression

$$ \begin{aligned} Z^{2} (t) & = \sum\limits_{k = 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{1}^{2} (T_{k} + \xi_{k} + \zeta_{k} )X_{k}^{2} } \\ & \quad + \sum\limits_{k = 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{2}^{2} (T_{k} + \xi_{k} + \zeta_{k} )Y_{k}^{2} } \\ & \quad + 2\left\{ {\sum\limits_{k = 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{2} (T_{k} + \xi_{k} + \zeta_{k} )X_{k} Y_{k} } } \right. \\ & \quad + \sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} X_{j} } } \\ & \quad + \sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{2} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{2} (T_{j} + \xi_{j} + \zeta_{j} )Y_{k} Y_{j} } } \\ & \quad + \sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{2} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} Y_{j} } } \\ & \quad \left. { + \sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{2} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{j} Y_{k} } } } \right\}. \\ \end{aligned} $$

Again using Lemma 2.1, we obtain for the expectation of the first two terms,

$$ \begin{aligned} & E\left[ {\sum\limits_{k = 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{i}^{2} (T_{k} + \xi_{k} + \zeta_{k} )W_{k,i}^{2} } } \right] \\ & = \sum\limits_{n = 1}^{\infty } {\sum\limits_{k = 1}^{n} {E\left[ {\left. {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{i}^{2} (T_{k} + \xi_{k} + \zeta_{k} )W_{k,i}^{2} } \right|N(t) = n} \right]P(N(t) = n)} } \\ & = \sum\limits_{n = 1}^{\infty } {\sum\limits_{k = 1}^{n} {\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {I(u,v,w,t)E[D_{i}^{2} (u + v + w)]E\left[ {\left. {W_{i}^{2} } \right|\zeta = w} \right]dF_{{T_{k} \left| {N(t) = n} \right.}} (u)dF_{\xi } (v)dF_{\zeta } (w) \times P(N(t) = n)} } } } } \\ & = \sum\limits_{k = 1}^{\infty } {\sum\limits_{n = k}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {I\left( {u,v,w,t} \right)E[D_{i}^{2} (u + v + w)]E\left[ {\left. {W_{i}^{2} } \right|\zeta = w} \right]P(\tilde{N}(\varLambda (t) - \varLambda (u)) = n - k) \times dF^{*k} (\varLambda (u))dF_{\xi } (v)dF_{\zeta } (w)} } } } } \\ & = \int\limits_{0}^{\infty } {E\left[ {\left. {W_{i}^{2} } \right|\zeta = w} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {I(u,v,w,t)E[D_{i}^{2} (u + v + w)]d\tilde{m}(\varLambda (u))dF_{\xi } (v)dF_{\zeta } (w)} } } . \\ \end{aligned} $$

The expectation of the third term yields,

$$ \begin{aligned} & E\left[ {\sum\limits_{k = 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{2} (T_{k} + \xi_{k} + \zeta_{k} )X_{k} Y_{k} } } \right] \\ & \quad = \int\limits_{0}^{\infty } {E\left[ {\left. {XY} \right|\zeta = w} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {I(u,v,w,t)E[D_{1} (u + v + w)D_{2} (u + v + w)]d\tilde{m}(\varLambda (u))dF_{\xi } (v)dF_{\zeta } (w)} } } . \\ \end{aligned} $$

Again using Lemma 2.1, we obtain for the expectation of the fourth and fifth terms,

$$ \begin{aligned} & E\left[ {\sum\limits_{k = 1}^{N\left( t \right) - 1} {\sum\limits_{j = k + 1}^{N\left( t \right)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{i} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{i} (T_{j} + \xi_{j} + \zeta_{j} )W_{k,i} W_{j,i} } } } \right] \\ & \quad = \sum\limits_{n = 2}^{\infty } {\sum\limits_{k = 1}^{n - 1} {\sum\limits_{j = k + 1}^{n} {\int\limits_{0}^{t} {\int\limits_{u}^{t} {E[I(u,\xi_{k} ,\zeta_{k} ,t)D_{i} (u + \xi_{k} + \zeta_{k} )I(z,\xi_{j} ,\zeta_{j} ,t)D_{i} (z + \xi_{j} + \zeta_{j} )W_{k,i} W_{j,i} ]} } } } } \\ & \quad \times dF_{{T_{k} ,T_{j} |N(t) = n}} (u,z)P(N(t) = n) \\ & \quad = \sum\limits_{k = 1}^{\infty } {\sum\limits_{j = k + 1}^{\infty } {\sum\limits_{n = j}^{\infty } {\int\limits_{0}^{t} {\int\limits_{u}^{t} {E[I(u,\xi_{k} ,\zeta_{k} ,t)D_{i} (u + \xi_{k} + \zeta_{k} )I(z,\xi_{j} ,\zeta_{j} ,t)D_{i} (z + \xi_{j} + \zeta_{j} )W_{k,i} W_{j,i} ]} } } } } \\ & \quad \times P(\tilde{N}(\varLambda (t) - \varLambda (z)) = n - j)dF^{*(j - k)} (\varLambda (z) - \varLambda (u))dF^{*k} (\varLambda (u)) \\ & \quad = \sum\limits_{k = 1}^{\infty } {\sum\limits_{j = k + 1}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{t - u} {I(u,v,w,t)I(u + u^{\prime } ,v^{\prime } ,w^{\prime } ,t)E[D_{i} (u + v + w)D_{i} (u + u^{\prime } + v^{\prime } + w^{\prime } )]} } } } } } } } \\ & \quad \quad \times E\left[ {\left. {W_{i} } \right|\zeta = w} \right]E\left[ {\left. {W_{i} } \right|\zeta = w^{\prime}} \right]dF^{*(j - k)} (\varLambda (u + u^{\prime } ) - \varLambda (u))dF^{*k} (\varLambda (u)) \\ & \quad \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime } )dF_{\zeta } (w)dF_{\zeta } (w^{\prime } ) \\ \end{aligned} $$

which yields,

$$ \begin{aligned} & = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. {W_{i} } \right|\zeta = w} \right]E\left[ {\left. {W_{i} } \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{t - u} {I(u,v,w,t)I(u + u^{\prime } ,v^{\prime } ,w^{\prime } ,t)} } } } } } \\ & \quad \times E[D_{i} (u + v + w)D_{i} (u + u^{\prime } + v^{\prime } + w^{\prime } )]d\tilde{m}(\varLambda (u + u^{\prime } ) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ & \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime } )dF_{\zeta } (w)dF_{\zeta } (w^{\prime } ). \\ \end{aligned} $$

The expectation of the sixth term yields,

$$ \begin{aligned} & E\left[ {\sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{2} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} Y_{j} } } } \right] \\ & \quad = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. Y \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{t - u} {I(u,v,w,t)I(u + u^{\prime},v^{\prime},w^{\prime},t)} } } } } } \\ & \quad \quad \times E[D_{1} (u + v + w)D_{2} (u + u^{\prime} + v^{\prime} + w^{\prime})]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ \quad \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime})dF_{\zeta } (w)dF_{\zeta } (w^{\prime}). \\ \end{aligned} $$

And finally, the expectation of the seventh term yields,

$$ \begin{aligned} & E\left[ {\sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)D_{2} (T_{k} + \xi_{k} + \zeta_{k} )I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)D_{1} (T_{j} + \xi_{j} + \zeta_{j} )Y_{k} X_{j} } } } \right] \\ & \quad = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. Y \right|\zeta = w} \right]E\left[ {\left. X \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{t - u} {I(u,v,w,t)I(u + u^{\prime},v^{\prime},w^{\prime},t)} } } } } } \\ & \quad \times E\left[ {D_{2} (u + v + w)D_{1} (u + u^{\prime} + v^{\prime} + w^{\prime})} \right]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ & \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime})dF_{\zeta } (w)dF_{\zeta } (w^{\prime}). \\ \end{aligned} $$

For the remainder of the proof, we have simply to gather the suitable terms. □

Proof of Theorem 2.3

We first isolate \( Z^{2} (t) \) from the product \( Z(t)Z(t + h) \), then we multiply the remaining sums between them, we separate each term in a suitable way, we condition each sum on \( N(t) \) and \( N(t + h) \) where it is appropriate. Hence, we first get

$$ \begin{aligned} & Z(t)Z(t + h) = Z^{2} (t) + [Z_{1} (t) + Z_{2} (t)]\left\{ {\sum\limits_{k = 1}^{N(t)} {[I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)]D_{1} (T_{k} + \xi_{k} + \zeta_{k} )X_{k} } } \right. \\ & \quad + \sum\limits_{k = N(t) + 1}^{N(t + h)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )X_{k} } \\ & \quad + \sum\limits_{k = 1}^{N(t)} {[I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)]D_{2} (T_{k} + \xi_{k} + \zeta_{k} )Y_{k} } \\ & \quad \left. { + \sum\limits_{k = N(t) + 1}^{N(t + h)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h)D_{2} (T_{k} + \xi_{k} + \zeta_{k} )Y_{k} } } \right\}. \\ \end{aligned} $$

For the expectation of the first term (with factor \( Z_{1} (t) \)), we get

$$ \begin{aligned} & E\left[ {Z_{1} (t)\sum\limits_{k = 1}^{N(t)} {[I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)]D_{1} (T_{k} + \xi_{k} + \zeta_{k} )X_{k} } } \right] \\ & \quad = E\left[ {\sum\limits_{k = 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)[I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)]D_{1}^{2} [T_{k} + \xi_{k} + \zeta_{k} ]X_{k}^{2} } } \right. \\ & \quad \quad + \sum\limits_{k = 1}^{N(t) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)[I(T_{j} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)]D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} X_{j} } } \\ & \quad \quad + \sum\limits_{j = 1}^{N(t) - 1} {\left. {\sum\limits_{k = j + 1}^{N\left( t \right)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)[I(T_{j} ,\xi_{j} ,\zeta_{j} ,t + h) - I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)]D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} X_{j} } } \right]} \\ & \quad = E\left[ {\sum\limits_{k = 1}^{N\left( t \right) - 1} {\sum\limits_{j = k + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)\left[ {I(T_{j} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)} \right]D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} X_{j} } } } \right. \\ & \quad \quad + \sum\limits_{j = 1}^{N(t) - 1} {\left. {\sum\limits_{k = j + 1}^{N(t)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)[I(T_{j} ,\xi_{j} ,\zeta_{j} ,t + h) - I(T_{j} ,\xi_{j} ,\zeta_{j} ,t)]D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{k} X_{j} } } \right]} \\ & = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. X \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{t - u} {I(u,v,w,t)[I(u + u^{\prime } ,v^{\prime } ,w^{\prime } ,t + h) - I(u + u^{\prime } ,v^{\prime } ,w^{\prime } ,t)]} } } } } } \\ & \quad \quad \times E[D_{1} (u + v + w)D_{1} (u + u^{\prime} + v^{\prime} + w^{\prime})]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ & \quad \quad \times dF_{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tau } }} (v)dF_{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tau } }} (v^{\prime})dF_{{\tilde{\tau }}} (w)dF_{{\tilde{\tau }}} (w^{\prime}) \\ & \quad \quad + \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. X \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{{t - u^{\prime}}} {I(u + u^{\prime},v,w,t)[I(u^{\prime},v^{\prime},w^{\prime},t + h) - I(u^{\prime},v^{\prime},w^{\prime},t)]} } } } } } \\ \quad \quad \times E[D_{1} (u + u^{\prime} + v + w)D_{1} (u^{\prime} + v^{\prime} + w^{\prime})]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u^{\prime}))d\tilde{m}(\varLambda (u^{\prime})) \\ \quad \quad \times dF_{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tau } }} (v)dF_{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\tau } }} (v^{\prime})dF_{{\tilde{\tau }}} (w)dF_{{\tilde{\tau }}} (w^{\prime}). \\ \end{aligned} $$

The expectation of the second term (with factor \( Z_{1} (t) \)) yields,

$$ \begin{aligned} & E\left[ {Z_{1} (t)\sum\limits_{j = N(t) + 1}^{N(t + h)} {I(T_{j} ,\xi_{j} ,\zeta_{j} ,t + h)D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{j} } } \right] \\ & \quad = E\left[ {\sum\limits_{k = 1}^{N(t)} {\sum\limits_{j = N(t) + 1}^{N(t + h)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)I(T_{j} ,\xi_{j} ,\zeta_{j} ,t + h)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )D_{1} (T_{j} + \xi_{j} + \zeta_{j} )X_{j} } } } \right] \\ & \quad = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. X \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{t - u}^{t + h - u} {I(u,v,w,t)I(u + u^{\prime},v^{\prime},w^{\prime},t + h)} } } } } } \\ & \quad \quad \times E[D_{1} (u + v + w)D_{1} (u + u^{\prime} + v^{\prime} + w^{\prime})]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ & \quad \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime})dF_{\zeta } \left( w \right)dF_{\zeta } (w^{\prime}). \\ \end{aligned} $$

Similarly to the two preceding expectations (with factor \( Z_{1} (t) \)), the third term yields,

$$ \begin{aligned} & E\left[ {Z_{1} (t)\sum\limits_{k = 1}^{N(t)} {\left[ {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h) - I(T_{k} ,\xi_{k} ,\zeta_{k} ,t)} \right]D_{2} (T_{k} + \xi_{k} + \zeta_{k} )Y_{k} } } \right] \\ & \quad = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. Y \right|\tilde{\tau } = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{t - u} {I(u,v,w,t)[I(u + u^{\prime},v^{\prime},w^{\prime},t + h) - I(u + u^{\prime},v^{\prime},w^{\prime},t)]} } } } } } \\ & \quad \quad \times E\left[ {D_{1} (u + v + w)D_{2} (u + u^{\prime} + v^{\prime} + w^{\prime})} \right]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ & \quad \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime})dF_{\zeta } (w)dF_{\zeta } (w^{\prime}) \\ & \quad + \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. X \right|\tilde{\tau } = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{0}^{{t - u^{\prime}}} {I(u + u^{\prime},v,w,t)[I(u^{\prime},v^{\prime},w^{\prime},t + h) - I(u^{\prime},v^{\prime},w^{\prime},t)]} } } } } } \\ & \quad \quad \times E[D_{1} (u + u^{\prime} + v + w)D_{2} (u^{\prime} + v^{\prime} + w^{\prime})]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u^{\prime}))d\tilde{m}(\varLambda (u^{\prime})) \\ & \quad \quad {\kern 1pt} \times dF_{\xi } (v)dF_{\xi } (v^{\prime})dF_{\zeta } (w)dF_{\zeta } (w^{\prime}), \\ \end{aligned} $$

and the fourth term yields,

$$ \begin{aligned} & E\left[ {Z_{1} (t)\sum\limits_{k = N(t) + 1}^{N(t + h)} {I(T_{k} ,\xi_{k} ,\zeta_{k} ,t + h)D_{1} (T_{k} + \xi_{k} + \zeta_{k} )X_{k} } } \right] \\ & \quad = \int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {E\left[ {\left. X \right|\zeta = w} \right]E\left[ {\left. Y \right|\zeta = w^{\prime}} \right]\int\limits_{0}^{\infty } {\int\limits_{0}^{\infty } {\int\limits_{0}^{t} {\int\limits_{t - u}^{t + h - u} {I(u,v,w,t)I(u + u^{\prime},v^{\prime},w^{\prime},t + h)} } } } } } \\ & \quad \quad \times E\left[ {D_{1} (u + v + w)D_{2} (u + u^{\prime} + v^{\prime} + w^{\prime})} \right]d\tilde{m}(\varLambda (u + u^{\prime}) - \varLambda (u))d\tilde{m}(\varLambda (u)) \\ & \quad \quad \times dF_{\xi } (v)dF_{\xi } (v^{\prime})dF_{\zeta } (w)dF_{\zeta } (w^{\prime}). \\ \end{aligned} $$

The same calculations can be done similarly with the factor \( Z_{2} (t) \) and, as in Theorem 2.2, the remainder of the proof simply consists to gather the suitable terms. \( \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Léveillé, G., Hamel, E. A compound trend renewal model for medical/professional liabilities. Eur. Actuar. J. 7, 435–463 (2017). https://doi.org/10.1007/s13385-017-0155-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-017-0155-1

Keywords

Navigation