Skip to main content
Log in

A study on the existence of a cooperative search method with reducing the first metting time between one of several nano-sensors and a Brownian particle

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

The coordinated search method for a one-dimensional Brownian particle in the fluid is investigated in this paper. This technique helps to remove pollutants and impurities from the fluid. To locate a Brownian particle that moves along one of n disjoint real lines, we have 2n cooperative nano-sensors coordinate their efforts such that each line contains two of them. All of these nano-sensors begin their searches at the origin. Because of random travelled distances right and left of the origin, we have a random sequence of distances on each line. Due to this uncertainty, we are able to integrate the discounted effort-reward search as a parameter in the distance function. By doing this, the expected value of the first meeting time between one of the nano-sensors and a Brownian particle will be reduced. We determine the approximate value of this expected value in addition to identifying the conditions under which it is finite. We use an example to illustrate the usefulness and application of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. El-Rayes, A.B., Mohamed, A.A., Abou Gabal, H.M.: Linear search for a Brownian target motion. Acta. Math. Sci. J. 23(B)(3), 321–327 (2003)

    Article  MathSciNet  Google Scholar 

  2. Mohamed, A., Kassem, M., El-Hadidy, M.: Multiplicative linear search for a Brownian target motion. Appli. Math. Model. 35(9), 4127–4139 (2011)

    Article  MathSciNet  Google Scholar 

  3. El-Hadidy, M.: Searching for a d-dimensional Brownian target with multiple sensors. Int. J. Math. Oper. Res. 9(3), 279–301 (2016)

    Article  MathSciNet  Google Scholar 

  4. El-Hadidy, M.: Generalised linear search plan for a D-dimensional random walk target. Int. J. Math. Oper. Res. 15(2), 211–241 (2019)

    Article  MathSciNet  Google Scholar 

  5. El-Hadidy, M.A., Alfreedi, A., Alzulaibani, A.: Optimal multiplicative generalized coordinated search technique to find a D-Dimensional random walker. Int. J. of Oper. Res. 42(1), 1–33 (2021)

    Article  MathSciNet  Google Scholar 

  6. Beck, A.: ’More on the linear search problem. Israel J. Math. 3(4), 61–70 (1965)

    Article  MathSciNet  Google Scholar 

  7. El-Hadidy, M., Alzulaibani, A.: Cooperative search model for finding a Brownian target on the real line. J. Taibah Univ. Sci. 13(1), 177–183 (2019)

    Article  Google Scholar 

  8. El-Hadidy, M., Abou-Gabal, H.: Coordinated search for a random walk target motion. Fluctu. Noise Lett. 17(1), 1850002 (2018)

    Article  ADS  Google Scholar 

  9. El-Hadidy, M.: Existence of cooperative search technique to find a brownian target. J. Egypt. Math. Soc. 28(1), 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  10. El-Hadidy, M.: Study on the existence of tracking model for a -dimensional random walk transportation radionuclide particle in a fractured medium. Int. J. Mod. Phys. B 36(4), 2250031 (2022)

    Article  ADS  Google Scholar 

  11. Alzulaibani, A., El-Hadidy, M.: Study on the finiteness of the first meeting time between N-dimensional Gaussian jump and Brownian diffusion particles in the fluid. Int. J. Mod. Phys. B 33(28), 1950334 (2019)

    Article  ADS  Google Scholar 

  12. El-Hadidy, H.: Studying the finiteness of the first meeting time between Levy flight jump and Brownian particles in the fluid reactive anomalous transport. Mod. Phys. Lett. B 33(22), 1950256 (2019)

    Article  ADS  Google Scholar 

  13. El-Hadidy, M., Alzulaibani, A.: Existence of a linear flows particle tracking model with a stochastic waiting time depending on the Gaussian jump length. Mod. Phys. Lett. B. 35(26), 2150426 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. El-Hadidy, M., Alzulaibani, A.: Study on the existence of the transportation particle tracking model in the interactive medium. Int. J. Modern Phys. B. 35(25), 2150256 (2021). https://doi.org/10.1142/S0217979221502568

    Article  ADS  Google Scholar 

  15. El-Hadidy, M., Abou-Gabal, H.: Searching for the random walking microorganism cells. Int. J. Biomath. 12(6), 1950064 (2019)

    Article  MathSciNet  Google Scholar 

  16. El-Hadidy, M., Alzulaibani, A.: A mathematical model for preventing HIV virus from proliferating inside CD4 T brownian cell using Gaussian jump nanorobot. Int. J. Biomath. 12(7), 1950076 (2019)

    Article  MathSciNet  Google Scholar 

  17. El-Hadidy, M.: Existence of finite parabolic spiral search plan for a Brownian target. Int. J. Oper. Res. 31(1), 368–383 (2018)

    Article  MathSciNet  Google Scholar 

  18. El-Hadidy, M.: Fuzzy optimal search plan for N-dimensional randomly moving target. Int. J. Comput. Methods 13(6), 1650038 (2016)

  19. El-Hadidy, M., Alzulaibani, A.: Existence of a finite multiplicative search plan with random distances and velocities to find a D-dimensional brownian target. J. Taibah Univ. Sci. 13(1), 1035–1043 (2019)

    Article  Google Scholar 

  20. Mohamed, A., El-Hadidy, M.: On probabilistic modeling and feasibility of collision between a randomly moving meteor and satellite. Afr. Mat. 32(1–2), 1–15 (2021)

    MathSciNet  Google Scholar 

  21. El-Hadidy, M.: Existence of optimal N-slinky-turn-spiral search paths for finding N-dimensional Brownian target. Int. J. Math. Oper. Res. 19(2), 180–203 (2021)

    Article  MathSciNet  Google Scholar 

  22. Angelopoulos, S., Lidbetter, T.: Competitive search in a network. Eur. J. Oper. Res. 286(2), 781–790 (2020)

    Article  MathSciNet  Google Scholar 

  23. Lidbetter, T.: Search and rescue in the face of uncertain threats. Eur. J. Oper. Res. 285(3), 1153–1160 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lidbetter, T.: Search games with multiple hidden objects. SIAM J. Control. Optim. 51(4), 3056–3074 (2013)

    Article  MathSciNet  Google Scholar 

  25. Reyniers, D.J.: Coordinated search for an object on the line. Eur. J. Oper. Res. 95(3), 663–670 (1996)

    Article  Google Scholar 

  26. Reyniers, D.J.: ’Coordinated two searchers for an object hidden on an interval. J. Oper. Res. Soc. 46(11), 1386–1392 (1995)

    Article  Google Scholar 

  27. Mohamed, A., Abou-Gabal, H., El-Hadidy, M.: Coordinated search for a randomly located target on the plane. Eur. J. Pure Appl. Math. 2(1), 97–111 (2009)

    MathSciNet  Google Scholar 

  28. Mohamed, A., Fergany, H., El-Hadidy, M.: On the coordinated search problem on the plane. Istan Univ. J. Sch. Busin. Admin. 41(1), 80–102 (2012)

    Google Scholar 

  29. El-Hadidy M, Teamah A, El-Bagoury, A. (2018) ‘3-dimensional coordinated search technique for a randomly located target. Int. J. Comput. Sci. Math. 9(3), 258–272

  30. Mohamed, A., El-Hadidy, M.: ‘Coordinated search for a conditionally deterministic target motion in the plane. Eur. J. Math. Sci. 2(3), 272–295 (2013)

    Google Scholar 

  31. El-Hadidy, M., Alzulaibani, A.: An existential study of a tracking model for a two-dimensional Brownian particle on a planar surface. Mod. Phys. Lett. B 36(12), 2250024 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. El-Hadidy, M., Alzulaibani, A.: Analytical study of the first collision time finiteness between two randomly moving particles in a fractured medium. Mod. Phys. Lett. B 36(25), 2250143 (2022)

    Article  MathSciNet  Google Scholar 

  33. Blum, A., Chawla, S., Karger, D., Lane, T., Meyerson, A., Minkoff, M: Approximation algorithms for orienteering and discounted-reward TSP. In: Proceeding of the 44th Annual IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp. 46–55 (2003)

  34. Lanillos, P., Besada-Portas, E., Pajares, G., Ruz, J.: Minimum time search for lost targets using cross entropy optimization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 602–609 (2012)

  35. Feller, W.: An Introduction to probability theory and its applications, vol. II. Wiley, New York (1966)

    Google Scholar 

  36. Klebaner, F.C.: Introduction to stochastic calculus with applications. Imperial College Press, London (1998)

    Book  Google Scholar 

  37. Alzulaibani, A., El-Hadidy, M.: Reduction in the searching time to find a brownian nanoparticle in the fluid. New Math. Natl. Comput. (2024). https://doi.org/10.1142/S1793005725500048

    Article  Google Scholar 

  38. Alamri, F., El-Hadidy, M.: Optimal linear tracking for a hidden target on one of k-intervals. J. Eng. Math. 144(1), 1–17 (2024)

    Article  MathSciNet  Google Scholar 

  39. El-Hadidy, M.: Optimal searching path to find a hidden target in a bounded region. Afr. Mat. 34(4), 64 (2023)

    Article  MathSciNet  Google Scholar 

  40. El-Hadidy, M., Fakharany, M.: On probabilistic cooperative search model to detect a lost target in n-disjoint areas. Stat. Optim. Inform. Comput. (2024). https://doi.org/10.19139/soic-2310-5070-1876. (In Press)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Abd Allah El-Hadidy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hadidy, M.A.A., Alzulaibani, A.A. A study on the existence of a cooperative search method with reducing the first metting time between one of several nano-sensors and a Brownian particle. Afr. Mat. 35, 32 (2024). https://doi.org/10.1007/s13370-024-01173-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-024-01173-w

Keywords

Navigation