Skip to main content

Advertisement

Log in

Uncertainty principles of Heisenberg type for the Bargmann transform

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this work, we introduce a family of weighted Bergman spaces \(\{{\mathcal {A}}_{\alpha ,n}\}_{n\in {\mathbb {N}}}\). This family satisfies the continuous inclusions \({\mathcal {A}}_{\alpha ,n}\subset \cdots \subset {\mathcal {A}}_{\alpha ,2}\subset {\mathcal {A}}_{\alpha ,1}\subset {\mathcal {A}}_{\alpha ,0}={\mathcal {A}}_{\alpha }\), where \({\mathcal {A}}_{\alpha }\) is the classical weighted Bergman space. Next, we define and study the derivative operator \(\nabla =\frac{\text{ d }}{\text{ d }z}\) and its adjoint operator \(L_{\alpha }=z^2\frac{\text{ d }}{\text{ d }z}+(\alpha +2) z\) on the weighted Bergman space \({\mathcal {A}}_{\alpha }\), and we establish an uncertainty inequality of Heisenberg-type for this space. A more general uncertainty inequality for the space \({\mathcal {A}}_{\alpha ,n}\) is also given when we considered the operators \(\nabla _n=\nabla ^n\) and \(L_{\alpha ,n}:=(L_{\alpha })^n\). Afterward, we give Heisenberg-type and Laeng-Morpurgo-type uncertainty inequalities for the Bargmann transform \(B_{\alpha }\), which is an isometric isomorphism between the space \({\mathcal {A}}_{\alpha }\) and the Lebesgue space \(L^2({\mathbb {R}}_+,\text{ d }\mu _{\alpha })\), where \(\text{ d }\mu _{\alpha }\) is an appropriate measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arjika, S., El Moize, O., Mouayn, Z.: Une \(q\)-déformation de la transformation de Bargmann vraie-polyanalytique. C. R. Math. 356(8), 903–910 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part I. Commun. Pure Appl. Math. 14, 187–214 (1961)

    Article  Google Scholar 

  3. Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal–Bargmann space. Trans. Am. Math. Soc. 301, 813–829 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bonami, A., Drmange, B., Jaming, P.: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam. 19(1), 23–55 (2003)

    Article  MathSciNet  Google Scholar 

  5. Busch, P., Lahti, P., Werner, R.F.: Heisenberg uncertainty for qubit measurements. Phys. Rev. A. 89(1), 012129 (2014)

    Article  Google Scholar 

  6. Cowling, M., Price, J.F.: Bandwidth versus time concentration: the Heisenberg–Pauli–Weyl inequality. SIAM J. Math. Anal. 15(1), 151–165 (1984)

    Article  MathSciNet  Google Scholar 

  7. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  8. Duren, P., Gallardo-Gutiérrez, E.A., Montes-Rodríguez, A.: A Paley–Wiener theorem for Bergman spaces with application to invariant subspaces. Bull. Lond. Math. Soc. 39, 459–466 (2007)

    Article  MathSciNet  Google Scholar 

  9. El Wassouli, F., Ghanmi, A., Intissar, A., Mouayn, Z.: Generalized second Bargmann transforms associated with the hyperbolic Landau levels in the Poincaré disk. Ann. Henri Poincaré 13(3), 513–524 (2012)

    Article  MathSciNet  Google Scholar 

  10. Essadiq, A., Ghanmi, A., Intissar, A.: A \(q\)-analogue of the weighted Bergman space on the disk and associated second \(q\)-Bargmann transform. J. Math. Anal. Appl. 443(2), 1311–1322 (2016)

    Article  MathSciNet  Google Scholar 

  11. Folland, G.: Harmonic Analysis on Phase Space, Annals of Mathematics Studies, vol. 122. Princeton University Press, Princeton (1989)

    Google Scholar 

  12. Gallardo-Gutiérrez, E.A., Partington, J.R., Segura, D.: Cyclic vectors and invariant subspaces for Bergman and Dirichlet shifts. J. Oper. Theory 62(1), 199–214 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  14. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer, New York (2000)

    Book  Google Scholar 

  15. Heisenberg, W.: The Physical Principles of the Quantum Theory. The University of Chicago Press in 1930, Dover, NewYork (1949)

    MATH  Google Scholar 

  16. Hilgevoord, J.: The uncertainty principle for energy and time. Am. J. Phys. 64(12), 1451–1456 (1996)

    Article  MathSciNet  Google Scholar 

  17. Hirschman, I.I.: A note on entropy. Am. J. Math. 79, 152–156 (1957)

    Article  MathSciNet  Google Scholar 

  18. Laeng, E., Morpurgo, C.: An uncertainty inequality involving \(L^1\)-norms. Proc. Am. Math. Soc. 127(12), 3565–3572 (1999)

    Article  Google Scholar 

  19. Morpurgo, C.: Extremals of some uncertainty inequalities. Bull. Lond. Math. Soc. 33(1), 52–58 (2001)

    Article  MathSciNet  Google Scholar 

  20. Nemri, A., Soltani, F., Abd-alla, A.N.: New studies on the Fock space associated to the generalized Airy operator and applications. Complex Anal. Oper. Theory 12(7), 1549–1566 (2018)

    Article  MathSciNet  Google Scholar 

  21. Paulsen, V.I.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  22. Schillo, D.: Toeplitz and Hankel operators on weighted Bergman spaces and the Fock space [Master’s thesis]. Universität Des Saarlandes, Saarbrücken (2014)

  23. Sen, D.: The Uncertainty relations in quantum mechanic. Curr. Sci. 107(2), 203–218 (2014)

    Google Scholar 

  24. Soltani, F.: Operators and Tikhonov regularization on the Fock space. Integral Transform. Spec. Funct. 25(4), 283–294 (2014)

    Article  MathSciNet  Google Scholar 

  25. Soltani, F.: Uncertainty principles for the Segal–Bargmann transform. J. Math. Res. Appl. 37(5), 563–576 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Soltani, F.: Applications on the Bessel–Struve-type Fock space. Commun. Korean Math. Soc. 32(4), 875–883 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Soltani, F.: Uncertainty principles for the Dunkl-type Segal–Bargmann transform. Complex Anal. Oper. Theory 11(3), 475–490 (2017)

    Article  MathSciNet  Google Scholar 

  28. Soltani, F., Nemri, A.: Analytical and numerical approximation formulas on the Dunkl-type Fock spaces. Acta Math. Vietnam. 42(1), 129–147 (2017)

    Article  MathSciNet  Google Scholar 

  29. Soltani, F.: Fock-type spaces associated to higher-order Bessel operator. Integral Transform. Spec. Funct. 29(7), 514–526 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)

    MATH  Google Scholar 

  31. Zhu, K.: Uncertainty principles for the Fock space. Sci. Sin. Math. 45(11), 1847–1854 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

I thank the referee for his careful reading and editing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Soltani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, F. Uncertainty principles of Heisenberg type for the Bargmann transform. Afr. Mat. 32, 1629–1643 (2021). https://doi.org/10.1007/s13370-021-00924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-021-00924-3

Keywords

Mathematics Subject Classification

Navigation