Skip to main content
Log in

Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce the Picard–Ishikawa hybrid iterative process. This new iterative process can be seen as a hybrid of Picard and Ishikawa iterative processes. It is our purpose in this paper to show that this new hybrid iterative process converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, Noor, Picard–Mann and Picard–Krasnoselskii iterative processes in the sense of Berinde (Iterative Approximation of Fixed Points. Efemeride, Baia Mare, 2002). We establish data dependence and stability results for our newly developed iterative process. Moreover, we apply our newly developed iterative process in finding the solution of delay differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, M., Nazir, T.: A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 66(2), 223–234 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 8(1), 61–79 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Akewe, H., Okeke, G.A., Olayiwola, A.F.: Strong convergence and stability of Kirk-multistep-type iterative schemes for contractive-type operators. Fixed Point Theory Appl. 2014, 45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Akewe, H., Okeke, G.A.: Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators. Fixed Point Theory Appl. 2015, 66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babu, G.V.R., Vara Prasad, K.N.V.: Mann iteration converges faster than Ishikawa iteration for the class of Zamfirescu operators. Fixed Point Theory Appl. 2006, 6 (2006) (Article ID 49615)

  6. Berinde, V.: Iterative Approximation of Fixed Points. Efemeride, Baia Mare (2002)

    MATH  Google Scholar 

  7. Berinde, V.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2004, 716359 (2004)

  8. Berinde, V.: On the convergence of the Ishikawa iteration in the class of quasi contractive operators. Acta Math. Univ. Comen. 73(1), 119–126 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Berinde, V., Berinde, M.: The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings. Carpath. J. Math. 21(1–2), 13–20 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Berinde, V.: Iterative Approximation of Fixed Points. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Campbell, S.A., Edwards, R., van den Driessche, P.: Delayed coupling between two neural network loops. SIAM J. Appl. Math. 65(1), 316–335 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coman, G.H., Pavel, G., Rus, I., Rus, I.A.: Introduction in the theory of operational equation, Ed. Dacia, Cluj-Napoca (1976)

  14. Cooke, K., Kuang, Y., Li, B.: Analyses of an antiviral immune response model with time delays. Can. Appl. Math. Q. 6(4), 321–354 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Cooke, K.L., van den Driessche, P., Zou, X.: Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39, 332–352 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dogan, K., Karakaya, V.: On the convergence and stability results for a new general iterative process. Sci. World J. 2014, 852475-1–852475-9 (2014)

    Article  Google Scholar 

  17. Forde, J.E.: Delay differential equation models in mathematical biology, Ph.D. Dissertation, University of Michigan (2005)

  18. Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarded argument (2014). arXiv:1403.2546v2 [math.FA] (28 Apr 2014)

  19. Hämmerlin, G., Hoffmann, K.H.: Numerical Mathematics. Springer, New York (1991)

    Book  MATH  Google Scholar 

  20. Harder, A.M.: Fixed point theory and stability results for fixed point iteration procedures, Ph.D. Thesis, University of Missouri-Rolla (1987)

  21. Harder, A.M., Hicks, T.L.: A stable iteration procedure for nonexpansive mappings. Math. Jpn. 33, 687–692 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Harder, A.M., Hicks, T.L.: Stability results for fixed point iteration procedures. Math. Jpn. 33, 693–706 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Khan, S.H.: A Picard–Mann hybrid iterative process. Fixed Point Theory Appl. 2013, 69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krasnosel’skii, M.A.: Two observations about the method of successive approximations. Usp. Mat. Nauk. 10, 123–127 (1955)

    Google Scholar 

  26. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163, 201–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Noor, M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251(1), 217–229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Okeke, G.A., Abbas, M.: Convergence and almost sure \(T\)-stability for a random iterative sequence generated by a generalized random operator. J. Inequal. Appl. 2015, 146 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Okeke, G.A., Kim, J.K.: Convergence and summable almost \(T\)-stability of the random Picard–Mann hybrid iterative process. J. Inequal. Appl. 2015, 290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Okeke, G.A., Kim, J.K.: Convergence and \((S,T)\)-stability almost surely for random Jungck-type iteration processes with applications. Cogent Math. 3, 1258768 (2016). 15pp

    Article  MathSciNet  MATH  Google Scholar 

  32. Okeke, G.A., Abbas, M.: A solution of delay differential equations via Picard–Krasnoselskii hybrid iterative process. Arab. J. Math. 6, 21–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osilike, M.O.: Stability of the Mann and Ishikawa iteration procedures for \(\phi \)-strongly pseudocontractions and nonlinear equations of the \(\phi \)-strongly accretive type. J. Math. Anal. Appl. 227, 319–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Picard, E.: Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 6, 145–210 (1890)

    MATH  Google Scholar 

  35. Rashwan, R.A., Hammad, H.A., Okeke, G.A.: Convergence and almost sure \((S, T)\)-stability for random iterative schemes. Int. J. Adv. Math. 1, 1–16 (2016)

    Google Scholar 

  36. Rhoades, B.E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56(3), 741–750 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rhoades, B.E., Xue, Z.: Comparison of the rate of convergence among Picard, Mann, Ishikawa, and Noor iterations applied to quasicontractive maps. Fixed Point Theory Appl. 2010, 12 (2010) (Article ID 169062)

  38. Singh, S.L., Bhatnagar, C., Mishra, S.N.: Stability of Jungck-type iterative procedures. Int. J. Math. Math. Sci. 19, 3035–3043 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Smolen, P., Baxter, D., Byrne, J.: A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys. J. 83, 2349–2359 (2002)

    Article  Google Scholar 

  40. Soltuz, S.M., Otrocol, D.: Classical results via Mann-Ishikawa iteration. Rev. d’Analyse Numer. de l’Approximation 36(2), 193–197 (2007)

  41. Soltuz, S.M., Grosan, T.: Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory Appl. 2008(1–7), 242916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Turchin, P.: Rarity of density dependence or population regulation with lags. Nature 344, 660–663 (1990)

    Article  Google Scholar 

  43. Turchin, P., Taylor, A.D.: Complex dynamics in ecological time series. Ecology 73, 289–305 (1992)

    Article  Google Scholar 

  44. Vielle, B., Chauvet, G.: Delay equation analysis of human respiratory stability. Math. Biosci. 152(2), 105–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Weng, X.: Fixed point iteration for local strictly pseudocontractive mapping. Proc. Am. Math. Soc. 113, 727–731 (1991)

    Article  MATH  Google Scholar 

  47. Xue, Z.: The comparison of the convergence speed between Picard, Mann, Krasnoselskij and Ishikawa iterations in Banach spaces. Fixed Point Theory Appl. 2008, 5 (2008) (Article ID 387056)

  48. Zhao, T.: Global periodic solutions for a differential delay system modeling a microbial population in the chemostat. J. Math. Anal. Appl. 193, 329–352 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godwin Amechi Okeke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okeke, G.A. Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications. Afr. Mat. 30, 817–835 (2019). https://doi.org/10.1007/s13370-019-00686-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-019-00686-z

Keywords

Mathematics Subject Classification

Navigation