Skip to main content
Log in

Approximate explicit solutions of Orr–Sommerfeld equations and heat transfer in a geometry with variable cross section by He’s methods and comparison with the ADM and DTM

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper two examples are studied; the Orr–Sommerfeld and nonlinear heat transfer equation. He’s variational iteration method (VIM) and Adomian’s decomposition method (ADM) are applied to the Orr–Sommerfeld equation. He’s VIM and differential transformation method (DTM) are applied to the nonlinear heat transfer equation. Comparison of different methods represents while the effect of the nonlinear term in the heat transfer equation is negligible, VIM and DTM lead approximately to the same answers; and when the kinematic viscosity in the Orr–Sommerfeld equation is small, VIM and ADM lead nearly to the same results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(A(x)\) :

Various surface (m\(^{2})\)

\(A_{0}\) :

Fin surface area (m\(^{2})\)

\(G_{0}\) :

Heat generation in beginning

\(G(x)\) :

Variable heat generation

HPM:

Homotopy perturbation method

VIM:

Variational iteration method

DTM:

Differential transformation method

\((t)\) :

Thermal conductivity (W/mk)

\(K_{0}\) :

Thermal conductivity in \(T\) = 0 (W/mk)

\(L\) :

Length of geometry (m)

\(T\) :

Temperature (K)

\(T_{0}\) :

Temperature in beginning (K)

\(T_{L}\) :

Temperature at the end (K)

Re:

Reynolds number

\(C\) :

Wave propagation velocity

\(V\) :

Undisturbed velocity profile

\(u\) :

Boundary-layer velocity profile

\(v\) :

Boundary-layer velocity profile

\(p\) :

Boundary-layer pressure

\(\Phi \) :

Perturbation stream function

\(\beta \) :

Coefficient of linear conductivity (1/k)

\(\nu \) :

Kinematic viscosity

\(\theta \) :

Dimension less temperature

\(\Psi \) :

Stream function

\(\alpha \) :

Disturbance wavelength

k:

Number of iteration

n:

Number of iteration

References

  1. Ganji, D.D.: Assessment of homotopy- perturbation and perturbation method in heat radiation equation. International Communications in Heat and Mass Transfer 33(3), 391–400 (2006)

    Article  MathSciNet  Google Scholar 

  2. J.H. He, Non-Perturbative Method for Strongly Nonlinear problems, Dissertation. De-verlag, im Internet GmbH, Berlin, 2006

  3. Jin, C., Liu, M.: A new modification of Adomian Decomposition Method for solving a kind of evolution equation 169, 953–962 (2005)

  4. Wazwaz, A.M.: exact solution to nonlinear diffusion equation obtained by the Decomposition Method. Appl. Math. Comput. 123, 109–122 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Adomian, solving Frontier problems of Physics, the Decomposition Method, Boston 1994

  6. Adomian, G.: Convergent series solution of nonlinear equation. J. Comput. Appl. Mat. 11, 113–117 (1984)

    MathSciNet  Google Scholar 

  7. Adomian, G.: solution of nonlinear PDE. Appl. Math. Lett. 11, 121–123 (1989)

    Article  MathSciNet  Google Scholar 

  8. He, J.H.: Variational Iteration Method -a kind of non-linear analytical technique: some examples. International Journal of nonlinear Mechanics 34(40), 699–708 (1999)

    Article  MATH  Google Scholar 

  9. SHA. Hashemi. Kachapi, A. Barari, N.Tolou, D.D. Ganji, solution of strongly nonlinear oscillation systems using Variational approach, Jornal of applied functional analasis,4(3) (2009) 528–535

  10. He, J.H.: approximate solution of nonlinear differential equations with convolution product nonlinearities. Computer Methods in Applied Mechanics and engineering 167(1–2), 69–73 (1998)

    Article  MATH  Google Scholar 

  11. He, J.H.: Variational Iteration Method for autonomous ordinary differential systems. Applied Mathematics and Computation 114(2–3), 115–123 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. He, J.H., Wu, X.H.: construction of solitary solution and compacton-like solution by Variational Iteration Method. chaos, solutions and fractals 29(1), 108–113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Meinhard T. Schobeiri: Fluid mechanics for engineers. Springer (2010)

  14. Abdel-Halim, I.H.: Hassan, on solving some eigenvalue-problems by using a Differential Transformation. Appl. Math. Comput. 127, 1–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, C.K.: S.P. Ju. Aplication of Differential Transformation to transient advective-dispersive transport equation. Appl. Math. Comput. 155, 25–38 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen, C.K., Chen, S.S.: Application of the Differential Transformation Method to a nonlinear conservative system. Appl. Math. Comput. 154, 431–441 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Joneidi, A.A., Domairry, G., Babaelahi, M.: Analytical treatment of MHD free convective flow and mass transfer over a stretching sheet with chemical reaction. J. Taiwan Inst. Chem. Eng. 41(91), 35–43 (2010)

    Article  Google Scholar 

  18. Joneidi, A.A.: D.D. ganji, M. Babaelahi, Differential Transformation to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity. Int. Commun. heat mass transfer 36, 757–762 (2009)

    Article  Google Scholar 

  19. Jalali, M., Ghafoori, S., Motevalli, M., Nejad, M.G., Ganji, D.D.: one-dimensional single rising bubble at low Reynolds numbers: solution of equation of motion by Differential Transformation Method. Asia-Pac. J. Chem. Eng (2010). doi:10.1002/apj.530

    MATH  Google Scholar 

  20. KuoBor-Lih, Lo Cheng-Ying, Application of the Differential Transformation Method to the solution of a damped system with high nonlinearity, nonlinear anal. 70 (2009) 1732–1737

  21. ZaidOdibat, ShaherMomani: VedatSuatErturk, generalized Differential Transformation Method: application to differential equations of fractional order. Appl. Math. Comput. 197, 467–477 (2008)

    Article  MathSciNet  Google Scholar 

  22. Alipanah, M., Ganji, D.D., Farnad, E., Babaei, K.: investigation of heat transfer in a geometry with Variable Cross Section:solution of equation by Homotopy Perturbation Method. heat transfer-Asian Reaserch 39(1), 1–13 (2010). doi:10.1002/htj.20266

    Google Scholar 

  23. Currie, I.G.: Fundamental mechanic of fluids,2th Edn. McGraw-Hill, New York (1993)

    Google Scholar 

  24. Abdou, M.A., Soliman, A.A.: Variation Iteration Method for solving Burger’s and coupled Burger’s equations. J. Comput. Appl. Math. 181, 245–251 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ganji, D.D., Sadighi, A.: Application of homotopy-perturbation and variation iteration method to nonlinear heat transfer and porus media equations. 207, 23–24 (2007)

  26. Miansari, M., Ganji, D.D.: Analytic treatment of linear and nonlinear Schrodinger equations: a study with homotopy-perturbation and Adomian decomposition methods. Phys. Lett. A 372(4), 465–469 (2008)

  27. Ganji, D.D., et al.: Variation iteration method for solving the epidemic model and the prey and predator problem. Appl. Math. Comput. 186, 1701–1709 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ganji, S.S., Ganji, D.D., Babazadeh, H., Karimpour, S.: Variation approach method for nonlinear oscillations of the motion of a rigid rod rocking back and cubic. Prog. Electromagn. Res. M 4, 23–32 (2008)

    Article  Google Scholar 

  29. Momani, S., Abuasad, S.: Application of He’s variation iteration method to Helmholtz equation. Chaos Solitons Fractals 27, 1119–1123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Obidat, Z.M., Momani, S.: Application of variation iteration method to nonlinear differential equations of fractional order. Int. J. Nonlinear Sci. Numer. Equ. 7(1), 27–34 (2006)

    Google Scholar 

  31. Adomian, G., Rach, R.: Noise terms in decomposition solution series. Comput. Math. Appl. 11, 61–64 (1992)

    Article  MathSciNet  Google Scholar 

  32. Jin, C., Liu, M.: A new modification of Adomian decomposition method for solving a kind of evolution equation. 169, 953–962 (2005)

  33. Wazwaz, A.M.: The decomposition method applied to systems of partial differential equations and to the reaction–diffusion Brusselator model. Appl. Math. Comput. 110, 251–264 (2005)

    Article  MathSciNet  Google Scholar 

  34. Wazwaz, A.M.: A comparision between Adomian Decomposition Method and Taylor series method in the series solution. Appl. Math. Comput. 97, 37–44 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  35. Adomian, G.: Solution of physical problem by decomposition. Comput. Math. Appl. 27, 145–154 (1994)

  36. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Math. Comput. Model. 13(7), 17–43 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavabari, R.H., Janbaz, A. & Ganji, D.D. Approximate explicit solutions of Orr–Sommerfeld equations and heat transfer in a geometry with variable cross section by He’s methods and comparison with the ADM and DTM. Afr. Mat. 26, 1009–1023 (2015). https://doi.org/10.1007/s13370-014-0252-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-014-0252-0

Keywords

Mathematics Subject Classification (2010)

Navigation