Skip to main content
Log in

Overstrength and Rotation Capacity of Short and Very Short Links Made of ASTM A992 Steel and Subjected to AISC 341-22 Loading Protocol

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aimed to investigate the cyclic performance of short and very short links made of ASTM A992 steel in eccentrically braced frames. An extensive parametric study was conducted using ABAQUS software, considering the effects of local buckling, cumulative damage under repeated loads, and steel fracture on strength and stiffness degradation. The study analyzed 114 isolated I-shaped links with various link lengths, stiffener arrangements, and a wide range of web and flange widths and thicknesses. The results showed that the shear links developed overstrength factors ranging from 1.73 to 2.53, with an average value of 2, indicating that the overstrength factor of 1.5, which is proposed by current seismic provisions, results in unconservative design predictions compared to the test results. Moreover, the rotation capacity of shear links exceeded the AISC 341-22 requirement with a large margin, and the stiffener requirements could be relaxed for very short links. The results also revealed that the link-length-ratio parameter could not represent the actual behavior differences among the shear links, and thus an effective parameter was proposed to determine the overstrength factor of shear links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Volynkin, D.; Dusicka, P.; Clifton, G.C.: Intermediate web stiffener spacing evaluation for shear links. J. Struct. Eng. 145, 4018257 (2019)

    Article  Google Scholar 

  2. Ghadami, A.; Pourmoosavi, G.G.; Talatahari, S.; Azar, B.F.F.: Overstrength factor of short low-yield-point steel shear links. Thin-Walled Struct. 161, 107473 (2021). https://doi.org/10.1016/j.tws.2021.107473

    Article  Google Scholar 

  3. Ghadami, A.; Pourmoosavi, G.; Ghamari, A.: Seismic design of elements outside of the short low-yield-point steel shear links. J. Constr. Steel Res. 178, 106489 (2021)

    Article  Google Scholar 

  4. Ghadami, A.; Pourmoosavi, G.: Numerical investigation on the flange contribution in the shear strength of short LYP I-shaped links without intermediate stiffeners. Structures 40, 485–497 (2022)

    Article  Google Scholar 

  5. Mohebkhah, A.; Chegeni, B.: Overstrength and rotation capacity for EBF links made of European IPE sections. Thin-Walled Struct. 74, 255–260 (2014)

    Article  Google Scholar 

  6. Manganiello, L.; Montuori, R.; Nastri, E.; Piluso, V.: The influence of the axial restraint on the overstrength of short links. J. Constr. Steel Res. 184, 106758 (2021)

    Article  Google Scholar 

  7. Rahnavard, R.; Hassanipour, A.; Suleiman, M.; Mokhtari, A.: Evaluation on eccentrically braced frame with single and double shear panels. J. Build. Eng. 10, 13–25 (2017)

    Article  Google Scholar 

  8. Zahrai, S.M.; Pirdavari, M.; Farahani, H.M.: Evaluation of hysteretic behavior of eccentrically braced frames with zipper-strut upgrade. J. Constr. Steel Res. 83, 10–20 (2013)

    Article  Google Scholar 

  9. Montuori, R.; Nastri, E.; Piluso, V.: Theory of plastic mechanism control for eccentrically braced frames with inverted Y-scheme. J. Constr. Steel Res. 92, 122–135 (2014)

    Article  Google Scholar 

  10. Zhuang, L.; Wang, J.; Nie, X.; Wu, Z.: Experimental study on the cyclic behaviour of shear links made of BLY160 steel. Thin-Walled Struct. 174, 109072 (2022)

    Article  Google Scholar 

  11. Azad, S.K.; Topkaya, C.: A review of research on steel eccentrically braced frames. J. Constr. Steel Res. 128, 53–73 (2017)

    Article  Google Scholar 

  12. ANSI/AISC 341, AISC 341-22: Seismic Provisions for Structural Steel Buildings, Chicago, Illinois, USA: American Institute of Steel Construction (AISC), 2022.

  13. Okazaki, T.; Engelhardt, M.D.: Cyclic loading behavior of EBF links constructed of ASTM A992 steel. J. Constr. Steel Res. 63, 751–765 (2007)

    Article  Google Scholar 

  14. Arce, G.: Impact of higher strength steels on local buckling and overstrength in eccentrically braced frames. University of Texas at Austin, Austin (2002)

    Google Scholar 

  15. Ji, X.; Wang, Y.; Ma, Q.; Okazaki, T.: Cyclic behavior of very short steel shear links. J. Struct. Eng. 142, 04015114 (2016). https://doi.org/10.1061/(asce)st.1943-541x.0001375

    Article  Google Scholar 

  16. McDaniel, C.C.; Uang, C.-M.; Seible, F.: Cyclic testing of built-up steel shear links for the new bay bridge. J. Struct. Eng. 129, 801–809 (2003)

    Article  Google Scholar 

  17. Dusicka, P.; Itani, A.M.; Buckle, I.G.: Cyclic behavior of shear links of various grades of plate steel. J. Struct. Eng. 136, 370–378 (2010). https://doi.org/10.1061/(asce)st.1943-541x.0000131

    Article  Google Scholar 

  18. Bozkurt, M.B.; Topkaya, C.: Replaceable links with direct brace attachments for eccentrically braced frames. Earthq. Eng. Struct. Dyn. 46, 2121–2139 (2017)

    Article  Google Scholar 

  19. Popov, E.P.; Engelhardt, M.D.: Seismic eccentrically braced frames. J. Constr. Steel Res. 10, 321–354 (1988)

    Article  Google Scholar 

  20. Engelhardt, M.D.; Popov, E.P.: On design of eccentrically braced frames. Earthq. Spectra 5, 495–511 (1989)

    Article  Google Scholar 

  21. Hjelmstad, K.D.; Popov, E.P.: Characteristics of eccentrically braced frames. J. Struct. Eng. 110(2), 340–353 (1984). https://doi.org/10.1061/(ASCE)0733-9445(1984)110:2(340)

    Article  Google Scholar 

  22. Engelhardt, M.D.: Behavior of long links in eccentrically braced frames. (1990)

  23. Malley, J.O.; Popov, E.P.: shear links in eccentrically braced frames. J. Struct. Eng. 110(9), 2275–2295 (1984). https://doi.org/10.1061/(ASCE)0733-9445(1984)110:9(2275)

    Article  Google Scholar 

  24. Mansour, N.; Christopoulos, C.; Tremblay, R.: Experimental validation of replaceable shear links for eccentrically braced steel frames. J. Struct. Eng. 137, 1141–1152 (2011)

    Article  Google Scholar 

  25. Okazaki, T.; Arce, G.; Ryu, H.-C.; Engelhardt, M.D.: Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames. J. Struct. Eng. 131, 1526–1535 (2005)

    Article  Google Scholar 

  26. Richards, P.W.; Uang, C.-M.: Effect of flange width-thickness ratio on eccentrically braced frames link cyclic rotation capacity. J. Struct. Eng. 131, 1546–1552 (2005)

    Article  Google Scholar 

  27. Okazaki, T.; Engelhardt, M.D.; Drolias, A.; Schell, E.; Hong, J.-K.; Uang, C.-M.: Experimental investigation of link-to-column connections in eccentrically braced frames. J. Constr. Steel Res. 65, 1401–1412 (2009)

    Article  Google Scholar 

  28. Berman, J.W.; Bruneau, M.: Experimental and analytical investigation of tubular links for eccentrically braced frames. Eng. Struct. 29, 1929–1938 (2007)

    Article  Google Scholar 

  29. Ghadami, A.; Broujerdian, V.: Shear behavior of steel plate girders considering variations in geometrical properties. J. Constr. Steel Res. 153, 567–577 (2019). https://doi.org/10.1016/j.jcsr.2018.11.009

    Article  Google Scholar 

  30. Amani, M.; Alinia, M.M.; Fadakar, M.: Imperfection sensitivity of slender/stocky metal plates. Thin-Walled Struct. 73, 207–215 (2013). https://doi.org/10.1016/J.TWS.2013.08.010

    Article  Google Scholar 

  31. AASHTO, American association of state highway and transportation officials, AASHTO LRFD Bridge design specifications, Washington, DC. (2020)

  32. Gheitasi, A.; Alinia, M.M.: Slenderness classification of unstiffened metal plates under shear loading. Thin-Walled Struct. 48, 508–518 (2010). https://doi.org/10.1016/j.tws.2010.02.004

    Article  Google Scholar 

  33. Alinia, M.M.; Habashi, H.R.; Khorram, A.: Nonlinearity in the postbuckling behaviour of thin steel shear panels. Thin-Walled Struct. 47, 412–420 (2009). https://doi.org/10.1016/j.tws.2008.09.004

    Article  Google Scholar 

  34. Broujerdian, V.; Mahyar, P.; Ghadami, A.: Effect of curvature and aspect ratio on shear resistance of unstiffened plates. J. Constr. Steel Res. 112, 263–270 (2015). https://doi.org/10.1016/j.jcsr.2015.04.025

    Article  Google Scholar 

  35. ANSI/AISC 360–22, Specification for Structural Steel Buildings, Am. Inst. Steel Constr. (2022) 1–676. 111

  36. Abaqus 6.14 Documentation, 2017. ABAQUS analysis user’s manual, ABAQUS Inc 2017 (accessed February 9, 2018)

  37. Chaboche, J.-L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5, 247–302 (1989)

    Article  Google Scholar 

  38. Chaboche, J.-L.: Time-independent constitutive theories for cyclic plasticity. Int. J. Plast. 2, 149–188 (1986)

    Article  Google Scholar 

  39. Hu, H.: Numerical study of seismic behavior of high strength steel replaceable shear links, (2015)

  40. Mansouri, A.: Development of a novel haunched link for eccentrically braced frames. Eng. Struct. 245, 112870 (2021)

    Article  Google Scholar 

  41. Jia, L.-J.; Kuwamura, H.: Ductile fracture model for structural steel under cyclic large strain loading. J. Constr. Steel Res. 106, 110–121 (2015)

    Article  Google Scholar 

  42. Ghadami, A.; Pourmoosavi Khoshknab, G.; Entezari, A.R.: Ultimate shear strength of unstiffened long web panels at high temperatures. Sharif J. Civ. Eng. 37, 63–73 (2021)

    Google Scholar 

  43. Ghadami, A.; Pourmoosavi, G.; Broujerdian, V.: Slenderness classification of shear panels with random pitting corrosion damage. J. Constr. Steel Res. 184, 106802 (2021)

    Article  Google Scholar 

  44. Ghadami, A.; Broujerdian, V.: Flexure–shear interaction in hybrid steel I-girders at ambient and elevated temperatures. Adv. Struct. Eng. 22, 1501–1516 (2019). https://doi.org/10.1177/1369433218817893

    Article  Google Scholar 

  45. Ansi, A.: AISC 341–02: Seismic Provisions for Structural Steel Buildings, Chicago, Illinois. American Institute of Steel Construction (AISC), USA (2002)

    Google Scholar 

  46. Chao, S.-H.; Khandelwal, K.; El-Tawil, S.: Ductile web fracture initiation in steel shear links. J. Struct. Eng. 132, 1192–1200 (2006)

    Article  Google Scholar 

  47. Richards, P.; Uang, C.-M.: Development of testing protocol for short links in eccentrically braced frames, Department of Structural Engineering. University of California, San Diego (2003)

    Google Scholar 

  48. Richards, P.W.: Cyclic stability and capacity design of steel eccentrically braced frames. University of California, San Diego (2004)

    Google Scholar 

  49. Ryu, H.C.: Effects of loading history on the behavior of links in seismic-resistant eccentrically braced frames. University of Texas at Austin, Austin (2005)

    Google Scholar 

  50. ANSI/AISC 341, AISC 341–05: Seismic provisions for structural steel buildings, Chicago, Illinois, USA: American Institute of Steel Construction (AISC), 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghadami.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadami, A., Zare, N. Overstrength and Rotation Capacity of Short and Very Short Links Made of ASTM A992 Steel and Subjected to AISC 341-22 Loading Protocol. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09103-5

Keywords

Navigation