Skip to main content
Log in

Multi-scale-space Grillage Mixed Method of Mechanical Behavior of Composite Box Beams with Finite Element Method (FEM)

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to different composition materials, steel–concrete composite box beams have interface slip, shear deformation, and other characteristics. Composite box beams have significant spatial effects and complex mechanical behavior under external loads. To simultaneously realize the simulation of macro mechanical properties and refined analysis of local mechanical behavior of composite box beam structure, this paper proposes a method to connect multi-scale models to space grillage models. In the macro model part, the space grillage method is used to consider the overall spatial mechanical characteristics; the multi-scale method is adopted to establish the refined model for the fine analysis of local primary stress parts. The contact element based on the constraint equation connects the multi-scale and the space grillage models to ensure the coordinated deformation of the two at the interface. This paper establishes a multi-scale-space grillage model of box section steel–concrete composite beams based on the Finite Element Method (FEM) and ANSYS program. Based on the model, experimental comparison verification and numerical example verification were carried out. The accuracy of the multi-scale-space grillage model for simulating the static and dynamic behavior of composite box beams is investigated. The research results show that the multi-scale-space grillage mixed simulation method has the advantages of high accuracy, low cost, and high efficiency. It provides a new idea and strategy for the mechanical behavior simulation analysis of complex composite box beam bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

This manuscript does not report data generation or analysis.

References

  1. Mahdi, H.; Abbas, R.: Effect of openings on the torsional behavior of SCC box beams under monotonic and repeated loading. Civil Eng. J. 9(9), 2300–2314 (2023)

    Article  Google Scholar 

  2. Muralikrishnan, B.; Al-Mawaali, A.; Al-Yaarubi, M.; Al-Mukhaini, B.; Kaleem, A.: Seismic upgradation of RC beams strengthened with externally bonded spent catalyst based ferrocement laminates. HighTech Innov. J. 4(1), 189–209 (2023)

    Article  Google Scholar 

  3. Mahdi, H.; Abbas, R.: Torsional behavior of CFRP strengthening of SCC box beams with web openings under repeated loading. Civil Eng. J. 9(12), 3038–3059 (2023)

    Article  Google Scholar 

  4. Xing, W.; Li, Y.; Ren, P.; Ding, J.; Li, Y.; Liu, G.; He, X.: Overview of the research and application status of steel-concrete double-sided composite continuous beams. Build. Struct. 50(17), 78 (2020)

    Google Scholar 

  5. Kumar, P.; Patnaik, A.; Chaudhary, S.: A review on application of structural adhesives in concrete and steel-concrete composite and factors influencing the performance of composite connections. Int. J. Adhes. Adhes. 77, 1–14 (2017)

    Article  Google Scholar 

  6. Rossi, A.; Nicoletti, R.S.; de Souza, A.S.C.; Martins, C.H.: Lateral distortional buckling in steel-concrete composite beams: a review. Structures 27, 1299–1312 (2020)

    Article  Google Scholar 

  7. Nie, J.G.; Wang, J.J.; Gou, S.K.; Zhu, Y.Y.; Fan, J.S.: Technological development and engineering applications of novel steel-concrete composite structures. Front. Struct. Civ. Eng. 13(1), 1–14 (2019)

    Article  Google Scholar 

  8. Lin, Y.Z.; Yan, J.C.; Wang, Z.F.; Fan, F.; Zou, C.Y.: Ultimate capacity and failure mechanism of SCS and S-UHPC composite deep beams: test and modeling. Eng. Struct. 245, 112874 (2021)

    Article  Google Scholar 

  9. Lin, J.P.; Wang, G.; Bao, G.; Xu, R.: Stiffness matrix for the analysis and design of partial-interaction composite beams. Constr. Build. Mater. 156, 761–772 (2017)

    Article  Google Scholar 

  10. Wang, W.; Zhang, X.D.; Zhou, X.L.; Wu, L.; Zhu, H.J.: Study on shear behavior of multi-bolt connectors for prefabricated steel-concrete composite beams. Front. Mater. 8, 625425 (2021)

    Article  Google Scholar 

  11. Zhu, L.; Su, R.K.L.; Li, M.J.: Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip. Eng. Struct. 232, 111797 (2021)

    Article  Google Scholar 

  12. Bagha, A.K.; Gupta, P.; Panwar, V.: Finite element model updating of a composite material beam using direct updating method. Mater. Today Proceed. 27(3), 1947–1950 (2020)

    Article  Google Scholar 

  13. Carrera, E.; Miglioretti, F.; Petrolo, M.: Accuracy of refined finite elements for laminated plate analysis. Compos. Struct. 93(5), 1311–1327 (2011)

    Article  Google Scholar 

  14. Yan, X.; Zhou, L.; Qi, A.; Mao, H.; Chen, W.: Finite element analysis on the new precast prestressed concrete frame structure. J. Earthquake Eng. Eng. Vib. 40(2), 54–63 (2020)

    Google Scholar 

  15. Gharad, A.M.; Sonparote, R.S.: Study of direct finite element method of analysing soil-structure Interaction in a simply supported railway bridge subjected to resonance. Iran. J. Sci. Technol. Trans. Civil Eng. 43(2), 273–286 (2019)

    Article  Google Scholar 

  16. Amichi, K.; Atalla, N.; Ruokolainen, R.: A new 3D finite element sandwich plate for predicting the vibroacoustic response of laminated steel panels. Finite Elem. Anal. Des. 46(12), 1131–1145 (2010)

    Article  Google Scholar 

  17. Sreadha, A.R.; Pany, C.; Varkey, M.V.: A review on seismic retrofit of beam-column joints. Int. J. Modern Trends Sci. Technol. 6(9), 80–93 (2020)

    Article  Google Scholar 

  18. Sreadha, A.R.; Pany, C.: Seismic study of multistorey building using floating column. Int. J. Emerg. Sci. Eng. 6(9), 6–11 (2020)

    Article  Google Scholar 

  19. Zhao, Z.; Chen, Z.; Yan, X.; Liu, H.: Elastic-plastic finite element analysis of steel sculpture yangfantaida based on multi-scaled model. Ind. Constr. 46(6), 144–148 (2016)

    Google Scholar 

  20. Zhou, X.Y.; Qian, S.Y.; Wang, N.W.; Xiong, W.; Wu, W.Q.: A review on stochastic multiscale analysis for FRP composite structures. Compos. Struct. 284, 115132 (2022)

    Article  Google Scholar 

  21. Du, Z.Y.; Yuan, J.; Zhou, Q.Y.; Hettiarachchi, C.; Xiao, F.P.: Laboratory application of imaging technology on pavement material analysis in multiple scales: a review. Constr. Build. Mater. 304, 124619 (2021)

    Article  Google Scholar 

  22. Spiridonov, D.; Vasilyeva, M.; Wang, M.; Chung, E.T.: Mixed Generalized Multiscale Finite Element Method for flow problem in thin domains. J. Comput. Appl. Math. 416, 114577 (2022)

    Article  MathSciNet  Google Scholar 

  23. Mehar, K.; Mishra, P.K.; Panda, S.K.: Thermal buckling strength of smart nanotube-reinforced doubly curved hybrid composite panels. Comput. Math. Appl. 90, 13–24 (2021)

    Article  MathSciNet  Google Scholar 

  24. Pany, C.: An insight on the estimation of wave propagation constants in an orthogonal grid of a simple line-supported periodic plate using a finite element mathematical model. Front. Mech. Eng. 8, 926559 (2022)

    Article  Google Scholar 

  25. Pany, C.; Parthan, S.: Axial wave propagation in infinitely long periodic curved panels. J. Vib. Acoust. 125(1), 24–30 (2003)

    Article  Google Scholar 

  26. Pany, C.; Parthan, S.; Mukherjee, S.: Vibration analysis of multi-supported curved panel using the periodic structure approach. Int. J. Mech. Sci. 44(2), 269–285 (2002)

    Article  Google Scholar 

  27. Brillouin, L.: Wave propagation in periodic structures. Nature 158, 926 (1953)

    Google Scholar 

  28. Pany, C.; Li, G.: Editorial: application of periodic structure theorywith finite element approach. Front. Mech. Eng. 9, 1–3 (2023)

    Article  Google Scholar 

  29. Zhang, Y.M.; Huang, B.W.; Zhang, J.Z.; Zhang, Z.X.: A multilevel finite element variational multiscale method for incompressible Navier–Stokes equations based on two local gauss integrations. Math. Probl. Eng. 2017, 4917054 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wu, Y.; Huang, F.: Partial mixed finite element method for multi-scale finite element modeling and analysis. J. Huazhong Univ. Sci. Technol. Nat. Sci. 46(5), 110–114 (2018)

    Google Scholar 

  31. Bertagnoli, G.; Gino, D.; Martinelli, E.: A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction. Eng. Struct. 140, 286–297 (2017)

    Article  Google Scholar 

  32. Lu, P.Z.; Huang, S.M.; Li, D.G.; Wu, Y.; Li, Y.: Spatial refinement grillage model of box-girder bridges. Mech. Based Des. Struct. Mach. 51(9), 4874–4893 (2023)

    Article  Google Scholar 

  33. Ma, Y.; Ni, Y.S.; Xu, D.; Li, J.K.: Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs. Steel Compos. Struct. 24(5), 549–559 (2017)

    Google Scholar 

  34. Sun, T.: Experimental research and experimental research on bending-torsion characteristics of curve composite beams with interior diaphragms, Shijiazhuang tiedao university. (In Chinese). (2014)

  35. Chiorean, C.G.: A computer method for nonlinear inelastic analysis of 3D composite steel-concrete frame structures. Eng. Struct. 57, 125–152 (2013)

    Article  Google Scholar 

  36. Liang, Q.Q.; Uy, B.; Bradford, M.A.; Ronagh, H.R.: Strength analysis of steel-concrete composite beams in combined bending and shear. J. Struct. Eng. Asce 131(10), 1593–1600 (2005)

    Article  Google Scholar 

  37. Song, F.; Su, H.; Liu, S.: Novel nonlinear fiber beam element model for analysis of steel-concrete composite beam with interface slip effect considered. J. Shenyang Jianzhu Univ. Nat. Sci. 38(1), 50–57 (2022)

    Google Scholar 

  38. Kim, Y.J.; Tanovic, R.; Wight, R.G.: Load configuration and lateral distribution of NATO wheeled military trucks for steel I-girder bridges. J. Bridg. Eng. 15(6), 740–748 (2010)

    Article  Google Scholar 

  39. Zhang, Q.; Li, L.; Qi, J.; Wang, S.: Study on theoretical model of curved composite box girder considering slip and shear lag. J. Rail Way Sci. Eng. 16(8), 1989–1997 (2019)

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by the Science and Technology Project of Zhejiang Provincial Department of Transportation (Grant No. 2018010, 2019H17 and 2019H14) and A Project Supported by Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Y202250418). The Science and Technology Agency of Zhejiang Province (Grant No. LTGG23E080006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Human participants and animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Ding, Y., Qi, Z. et al. Multi-scale-space Grillage Mixed Method of Mechanical Behavior of Composite Box Beams with Finite Element Method (FEM). Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09066-7

Keywords

Navigation