Skip to main content
Log in

Mapping Soil Textural Fractions at Regional Scale Based on Local Morphometric Variables Using a Hybrid Approach (Case Study: Khuzestan Province, Iran)

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Local morphometric variables (LMVs) are frequently found as weaker predictors than other environmental covariates in digital soil mapping. This study tested and evaluated the performance of a hybrid approach combining gradient boosted regression trees (GBRT) and regularized regression (RR) algorithms in predicting soil textural fractions using a set of LMVs in Khuzestan province, Iran. Here five LMVs (slope gradient, slope aspect, horizontal curvature, vertical curvature, and contour geodesic torsion) were derived from a spheroidal equal-angular DEM as original predictors. The results demonstrated that the hybrid approach improved prediction accuracy for sand, clay, and silt contents by an average of 56% compared to the GBRT models. The importance analysis revealed the significant contribution of tree-based variables obtained from decomposing GBRT models in predicting soil textural fractions. This approach could be recommended for digital soil mapping, particularly in situations of limited environmental covariates or geomorphometric techniques that cannot be easily applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Lal, R.; Shukla, M.K.: Principles of Soil Physics (1st ed.). CRC Press (2004). https://doi.org/10.4324/9780203021231

  2. Stępień, M.; Samborski, S.; Gozdowski, D.; Dobers, E.S.; Chormański, J.; Szatyłowicz, J.: Assessment of soil texture class on agricultural fields using ECa, Amber NDVI, and topographic properties. J. Plant Nutr. Soil Sci. 178(3), 523–536 (2015). https://doi.org/10.1002/jpln.201400570

    Article  Google Scholar 

  3. Amirian Chekan, A.; Taghizadeh Mehrjerdi, R.; Sarmadian, F.; Heidary, A.: Three-dimensional mapping of soil texture using spline depth functions and artificial neural networks. Iran. J. Soil Water Res. 48(1), 113–123 (2017). https://doi.org/10.22059/ijswr.2017.61346

    Article  Google Scholar 

  4. Dharumarajan, S.; Hegde, R.: Digital mapping of soil texture classes using random forest classification algorithm. Soil Use Manag. 38(1), 135–149 (2022). https://doi.org/10.1111/sum.12668

    Article  Google Scholar 

  5. Florinsky, I.: Digital Terrain Analysis in Soil Science and Geology, 2nd edn. Academic Press, Amsterdam (2016)

    Google Scholar 

  6. Khanifar, J.; Khademalrasoul, A.: Multiscale computation of different plan curvature forms to enhance the prediction of soil properties in a low-relief watershed. Acta Geophys. (2023). https://doi.org/10.1007/s11600-022-01013-0

    Article  Google Scholar 

  7. Khanifar, J.: Modeling of soil thickness based on DEM derivatives calculated using different polynomials. Arab. J. Geosci. 15(7), 655 (2022). https://doi.org/10.1007/s12517-022-09941-3

    Article  Google Scholar 

  8. Khanifar, J.; Khademalrasoul, A.: Modeling of land surface temperature–multiscale curvatures relationship using XGBoost algorithm (Case study: Southwestern Iran). Int. J. Environ. Sci. Technol. 19(12), 11763–11774 (2022). https://doi.org/10.1007/s13762-022-04409-z

    Article  Google Scholar 

  9. Young, M.: Statistical characterization of altitude matrices by computer. Terrain analysis: program documentation: Report 5 on Grant DA-ERO-591-73-G0040. Department of Geography, University of Durham, Durham, UK. 18 pp (1978).

  10. Evans, I. S.: Statistical characterization of altitude matrices by computer. An integrated system of terrain analysis and slope mapping. The final report on grant DA-ERO-591-73-G0040. Durham, UK: University of Durham (1979).

  11. Zevenbergen, L.W.; Thorne, C.R.: Quantitative analysis of land surface topography. Earth Surf. Proc. Landf. 12(1), 47–56 (1987). https://doi.org/10.1002/esp.3290120107

    Article  Google Scholar 

  12. Shary, P.A.: Land surface in gravity points classification by a complete system of curvatures. Math. Geol. 27, 373–390 (1995). https://doi.org/10.1007/BF02084608

    Article  Google Scholar 

  13. Khanifar, J.; Khademalrasoul, A.: Effects of neighborhood analysis window forms and derivative algorithms on the soil aggregate stability–Landscape modeling. CATENA 198, 105071 (2021). https://doi.org/10.1016/j.catena.2020.105071

    Article  Google Scholar 

  14. Keshavarzi, A.; del Árbol, M.Á.S.; Kaya, F.; Gyasi-Agyei, Y.; Rodrigo-Comino, J.: Digital mapping of soil texture classes for efficient land management in the Piedmont plain of Iran. Soil Use Manag. 38(4), 1705–1735 (2022). https://doi.org/10.1111/sum.12833

    Article  Google Scholar 

  15. Mirzaeitalarposhti, R.; Shafizadeh-Moghadam, H.; Taghizadeh-Mehrjardi, R.; Demyan, M.S.: Digital soil texture mapping and spatial transferability of machine learning models using sentinel-1, sentinel-2, and terrain-derived covariates. Remote Sens. 14(23), 5909 (2022). https://doi.org/10.3390/rs14235909

    Article  Google Scholar 

  16. Sahraei, N.; Landi, A.; Hojati, S.: Digital mapping of soil texture components in part of Khuzestan plain lands using machine learning models. Iran. J. Soil Water Res. 53(10), 2261–2276 (2022). https://doi.org/10.22059/ijswr.2022.348442.669360 [Persian literature]

    Article  Google Scholar 

  17. Song, X.; Liu, F.; Zhang, G.; Li, D.; Zhao, Y.; Yang, J.: Mapping soil organic carbon using local terrain attributes: a comparison of different polynomial models. Pedosphere 27(4), 681–693 (2017). https://doi.org/10.1016/S1002-0160(17)60445-4

    Article  Google Scholar 

  18. Khanifar, J.; Khademalrasoul, A.: Utilization of multi-scale geomorphometric algorithms and third-order morphometric variables for soil thickness modeling. T GIS. 26(2), 887–901 (2022). https://doi.org/10.1111/tgis.12891

    Article  Google Scholar 

  19. Florinsky, I.V.: Derivation of topographic variables from a digital elevation model given by a spheroidal trapezoidal grid. Int. J. Geogr. Inf. Sci. 12(8), 829–852 (1998). https://doi.org/10.1080/136588198241527

    Article  Google Scholar 

  20. Riza, S.; Sekine, M.; Kanno, A.; Yamamoto, K.; Imai, T.; Higuchi, T.: Modeling soil landscapes and soil textures using hyperscale terrain attributes. Geoderma 402, 115177 (2021). https://doi.org/10.1016/j.geoderma.2021.115177

    Article  Google Scholar 

  21. Ivanov, A., Gocheva-Ilieva, S., Stoimenova, M.: Hybrid boosted trees and regularized regression for studying ground ozone and PM10 concentrations. In AIP Conference Proceedings (vol. 2302 No. 1, p 060005). AIP Publishing (2020). https://doi.org/10.1063/5.0033591

  22. Batjes, N.H.; Ribeiro, E.; van Oostrum, A.J.M.: Standardised soil profile data for the world (WoSIS snapshot—September 2019). Earth Syst. Sci. Data (2020). https://doi.org/10.17027/isric-wdcsoils.20190901

    Article  Google Scholar 

  23. Moeys, J.: The soil texture wizard: R functions for plotting, classifying, transforming and exploring soil texture data. R package soiltexture, Version 1.5.1 (2018). Available online: https://cran.r-project.org/web/packages/soiltexture/vignettes/soiltexture_vignette.pdf (Accessed on 01 July 2023).

  24. Khanifar, J.; Khademalrasoul, A.: Effect of neighborhood size on morphometric variables and their relationship with vegetation cover within three geomorphologically and climatically different sub-watersheds in Southwest Iran. Iran. J. Soil Water Res. 53(1), 1–13 (2022). https://doi.org/10.22059/ijswr.2022.334244.669136[Persianliterature]

    Article  Google Scholar 

  25. Minár, J.; Evans, I.S.; Jenčo, M.: A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction. Earth-Sci. Rev. 211, 103414 (2020). https://doi.org/10.1016/j.earscirev.2020.103414

    Article  Google Scholar 

  26. Abdi, O.; Uusitalo, J.; Pietarinen, J.; Lajunen, A.: Evaluation of forest features determining GNSS positioning accuracy of a novel low-cost, mobile RTK system using LiDAR and TreeNet. Remote Sens. 14(12), 2856 (2022). https://doi.org/10.3390/rs14122856

    Article  Google Scholar 

  27. Salford Systems.: Salford Predictive Modeler: Model Compression via ISLE and RuleLearner® (2019). Available online: https://www.minitab.com/enus/products/spm/user-guides/ (Accessed on 31 Oct 2022).

  28. Chatrenor, M.; Landi, A.; Farrokhian Firouzi, A.; Noroozi, A.; Bahrami, H.: Spectral behavior modeling of soil texture over dust center of Khuzestan province using hyperspectral images and random forest model. Adv. Appl. Geol. 9(4), 466–479 (2020). https://doi.org/10.22055/aag.2019.29642.1990 [Persian literature]

    Article  Google Scholar 

  29. Khanifar, J.; Khademalrasoul, A.; Amerikhah, H.: Effects of digital elevation model (DEM) spatial resolution on soil landscape analysis (Case study Raakat watershed of Izeh, Khuzestan Province). Appl. Soil Res. 8(1), 121–135 (2020) [Persian literature]

    Google Scholar 

  30. Roecker, S. M. Thompson, J. A.: Scale effects on terrain attribute calculation and their use as environmental covariates for digital soil mapping. In: Boettinger, J. L., Howell, D. W., Moore, A. C., Hartemink, A. E., Kienast-Brown, S. (Eds.) Digital soil mapping: Bridging research, environmental application, and operation, pp. 55–66. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8863-5_5

  31. Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A.: Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: a case study in Iran. Sci. Total. Environ. 721, 137703 (2020). https://doi.org/10.1016/j.scitotenv.2020.137703

    Article  Google Scholar 

  32. Taghizadeh-Mehrjardi, R.; Hamzehpour, N.; Hassanzadeh, M.; Heung, B.; Goydaragh, M.G.; Schmidt, K.; Scholten, T.: Enhancing the accuracy of machine learning models using the super learner technique in digital soil mapping. Geoderma 399, 115108 (2021). https://doi.org/10.1016/j.geoderma.2021.115108

    Article  Google Scholar 

  33. Naimi, S.; Ayoubi, S.; Demattê, J.A.; Zeraatpisheh, M.; Amorim, M.T.A.; Mello, F.A.D.O.: Spatial prediction of soil surface properties in an arid region using synthetic soil image and machine learning. Geocarto Int. 37(25), 8230–8253 (2022). https://doi.org/10.1080/10106049.2021.1996639

    Article  Google Scholar 

  34. Taghizadeh-Mehrjardi, R.; Schmidt, K.; Toomanian, N.; Heung, B.; Behrens, T.; Mosavi, A.; Scholten, T.: Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma 383, 114793 (2021). https://doi.org/10.1016/j.geoderma.2020.114793

    Article  Google Scholar 

  35. Behrens, T.; Schmidt, K.; Ramirez-Lopez, L.; Gallant, J.; Zhu, A.X.; Scholten, T.: Hyper-scale digital soil mapping and soil formation analysis. Geoderma 213, 578–588 (2014). https://doi.org/10.1016/j.geoderma.2013.07.031

    Article  Google Scholar 

  36. Savari, Z.; Hojati, S.; Taghizadeh Mehrjerdi, R.: Digital mapping of surface soil salinity in Khuzestan Province, using regression kriging. JWSS-Isfahan Univ. Technol. 25(3), 159–175 (2021). https://doi.org/10.47176/jwss.25.3.24654 [Persian literature]

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to sincerely gratitude his father and mother for their full support throughout this research. The author is also very grateful to all individuals who contributed to the datasets utilized in this study.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Khanifar.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanifar, J. Mapping Soil Textural Fractions at Regional Scale Based on Local Morphometric Variables Using a Hybrid Approach (Case Study: Khuzestan Province, Iran). Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08961-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08961-3

Keywords

Navigation