Skip to main content
Log in

Efficient Tool Wear Prediction in Manufacturing: BiLPReS Hybrid Model with Performer Encoder

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Predictive maintenance in industrial settings, especially tool wear prediction, remains crucial for operational efficiency and cost reduction. This paper proposes BiLPReS, a novel predictive model leveraging a hybrid architecture integrating bidirectional long short-term memory, Performer encoder, and residual-skip connections. Compared to convolutional and recurrent neural networks, the proposed model achieves long-range dependent global sensing and parallel computing. The Performer encoder reduces the computational complexity by the FAVOR + approach compared to the Transformer encoder. Moreover, the proposed model includes residual-skip connections to enhance information flow efficiency and minimize the risk of information loss during training. The final use of the fully connected layer reduces dimensionality and generates the predicted values. Experiments on the PHM2010 dataset involve the analysis of multichannel sensor signals, including force, acceleration, and acoustic emission. The model undergoes training and validation through k-fold cross-validation. Results unequivocally demonstrate the model’s high accuracy. Furthermore, conducting comparative experiments by selectively reducing modules validates the effectiveness of the utilized modules in enhancing the model’s performance. This study provides a viable solution for optimizing maintenance schedules, reducing downtime, and real-time monitoring of tool machining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tao, F.; Qi, Q.; Liu, A.; Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48, 157–169 (2018). https://doi.org/10.1016/j.jmsy.2018.01.006

    Article  Google Scholar 

  2. Yan, B.; Zhu, L.; Dun, Y.: Tool wear monitoring of TC4 titanium alloy milling process based on multi-channel signal and time-dependent properties by using deep learning. J. Manuf. Syst. 61, 495–508 (2021). https://doi.org/10.1016/j.jmsy.2021.09.017

    Article  Google Scholar 

  3. Thakre, A.A.; Lad, A.V.; Mala, K.: Measurements of tool wear parameters using machine vision system. Model. Simul. Eng. 2019, 1876489 (2019). https://doi.org/10.1155/2019/1876489

    Article  Google Scholar 

  4. Huang, Z.; Shao, J.; Guo, W.; Li, W.; Zhu, J.; Fang, D.: Hybrid machine learning-enabled multi-information fusion for indirect measurement of tool flank wear in milling. Measurement 206, 112255 (2023). https://doi.org/10.1016/j.measurement.2022.112255

    Article  Google Scholar 

  5. Kuntoğlu, M.; Salur, E.; Gupta, M.K.; Sarıkaya, M.; Pimenov, D.Y.: A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. Int. J. Adv. Manuf. Technol. 116, 2711–2735 (2021). https://doi.org/10.1007/s00170-021-07425-4

    Article  Google Scholar 

  6. Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018). https://doi.org/10.1016/j.jmsy.2018.01.003

    Article  Google Scholar 

  7. Zhang, C.; Zhang, H.: Modelling and prediction of tool wear using LS-SVM in milling operation. Int. J. Comput. Integr. Manuf. 29, 76–91 (2016). https://doi.org/10.1080/0951192X.2014.1003408

    Article  Google Scholar 

  8. Wu, D.; Jennings, C.; Terpenny, J.; Gao, R.X.; Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. (2017). https://doi.org/10.1115/1.4036350

    Article  Google Scholar 

  9. Zhang, X.; Liu, L.; Wan, X.; Feng, B.: Tool wear online monitoring method based on DT and SSAE-PHMM. J. Comput. Inf. Sci. Eng. (2021). https://doi.org/10.1115/1.4050531

    Article  Google Scholar 

  10. Li, Y.; Huang, X.; Tang, J.; Li, S.; Ding, P.: A steps-ahead tool wear prediction method based on support vector regression and particle filtering. Measurement 218, 113237 (2023). https://doi.org/10.1016/j.measurement.2023.113237

    Article  Google Scholar 

  11. Geramifard, O.; Xu, J.X.; Zhou, J.H.; Li, X.: Multimodal hidden markov model-based approach for tool wear monitoring. IEEE Trans. Ind. Electron. 61, 2900–2911 (2014). https://doi.org/10.1109/TIE.2013.2274422

    Article  Google Scholar 

  12. Liang, Y.; Hu, S.; Guo, W.; Tang, H.: Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM. Measurement 187, 110247 (2022). https://doi.org/10.1016/j.measurement.2021.110247

    Article  Google Scholar 

  13. Cheng, M.; Jiao, L.; Shi, X.; Wang, X.; Yan, P.; Li, Y.: An intelligent prediction model of the tool wear based on machine learning in turning high strength steel. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 234, 1580–1597 (2020). https://doi.org/10.1177/0954405420935787

    Article  Google Scholar 

  14. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L.: Review of deep learning: concepts CNN architectures, challenges, applications, future directions. J. Big. Data. 8, 53 (2021). https://doi.org/10.1186/s40537-021-00444-8

    Article  Google Scholar 

  15. Zhang, X.; Shi, B.; Feng, B.; Liu, L.; Gao, Z.: A hybrid method for cutting tool RUL prediction based on CNN and multistage Wiener process using small sample data. Measurement 213, 112739 (2023). https://doi.org/10.1016/j.measurement.2023.112739

    Article  Google Scholar 

  16. Li, J.; Lu, J.; Chen, C.; Ma, J.; Liao, X.: Tool wear state prediction based on feature-based transfer learning. Int. J. Adv. Manuf. Technol. 113, 3283–3301 (2021). https://doi.org/10.1007/s00170-021-06780-6

    Article  Google Scholar 

  17. Lee, W.; Abdullah, M.; Ong, P.; Abdullah, H.; Teo, W.: Prediction of flank wear and surface roughness by recurrent neural network in turning process. J. Adv. Manuf. Technol. (JAMT). 15, (2021). https://jamt.utem.edu.my/jamt/article/view/6101

  18. Serin, G.; Sener, B.; Ozbayoglu, A.M.; Unver, H.O.: Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 109, 953–974 (2020). https://doi.org/10.1007/s00170-020-05449-w

    Article  Google Scholar 

  19. Marani, M.; Zeinali, M.; Songmene, V.; Mechefske, C.K.: Tool wear prediction in high-speed turning of a steel alloy using long short-term memory modelling. Measurement 177, 109329 (2021). https://doi.org/10.1016/j.measurement.2021.109329

    Article  Google Scholar 

  20. Molitor, D.A.; Kubik, C.; Becker, M.; Hetfleisch, R.H.; Lyu, F.; Groche, P.: Towards high-performance deep learning models in tool wear classification with generative adversarial networks. J. Mater. Process. Technol. 302, 117484 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117484

    Article  Google Scholar 

  21. Terrazas, G.; Martínez-Arellano, G.; Benardos, P.; Ratchev, S.: Online tool wear classification during dry machining using real time cutting force measurements and a CNN approach. J. Manuf. Mater. Process. (2018). https://doi.org/10.3390/jmmp2040072

    Article  Google Scholar 

  22. Zhu, Q.; Sun, B.; Zhou, Y.; Sun, W.; Xiang, J.: Sample augmentation for intelligent milling tool wear condition monitoring using numerical simulation and generative adversarial network. IEEE Trans. Instrum. Meas. 70, 1–10 (2021). https://doi.org/10.1109/TIM.2021.3077995

    Article  Google Scholar 

  23. Ma, J.; Luo, D.; Liao, X.; Zhang, Z.; Huang, Y.; Lu, J.: Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning. Measurement 173, 108554 (2021). https://doi.org/10.1016/j.measurement.2020.108554

    Article  Google Scholar 

  24. Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Al-Turjman, F.; Pinheiro, P.R.: CovidGAN: data augmentation using auxiliary classifier GAN for improved Covid-19 detection. IEEE Access 8, 91916–91923 (2020). https://doi.org/10.1109/ACCESS.2020.2994762

    Article  Google Scholar 

  25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł; Polosukhin, I.: Attention is all you need. Adv. Neural. Inf. Process. Syst. (2017). https://doi.org/10.48550/arXiv.1706.03762

    Article  Google Scholar 

  26. Feng, T.; Guo, L.; Gao, H.; Chen, T.; Yu, Y.; Li, C.: A new time–space attention mechanism driven multi-feature fusion method for tool wear monitoring. Int. J. Adv. Manuf. Technol. 120, 5633–5648 (2022). https://doi.org/10.1007/s00170-022-09032-3

    Article  Google Scholar 

  27. Liu, H.; Liu, Z.; Jia, W.; Lin, X.; Zhang, S.: A novel transformer-based neural network model for tool wear estimation. Meas. Sci. Technol. 31, 065106 (2020). https://doi.org/10.1088/1361-6501/ab7282

    Article  Google Scholar 

  28. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. (2018). https://doi.org/10.48550/arXiv.1810.04805

  29. Floridi, L.; Chiriatti, M.: GPT-3: its nature, scope, limits, and consequences. Minds. Mach. 30, 681–694 (2020). https://doi.org/10.1007/s11023-020-09548-1

    Article  Google Scholar 

  30. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V.: Xlnet: generalized autoregressive pretraining for language understanding. Adv. Neural. Inf. Process. Syst. (2019). https://doi.org/10.48550/arXiv.1906.08237

    Article  Google Scholar 

  31. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. (2020). https://doi.org/10.48550/arXiv.2010.11929

  32. Sun, Q.; Yu, Z.; Li, Y.; Yang, S.; Xu, J.; Yu, H.: Wear status prediction of micro milling tools by transfer learning and ViT model, In: 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 183–187 (2021). https://doi.org/10.1109/3M-NANO49087.2021.9599807

  33. So, D.R.; Liang, C.; Le, Q.V.: The evolved transformer, In: International conference on machine learning, PMLR, pp. 5877–5886 (2019). https://doi.org/10.1109/IJCNN.1989.118638

  34. Choromanski, K.; Likhosherstov, V.; Dohan, D.; Song, X.; Gane, A.; Sarlos, T.; Hawkins, P.; Davis, J.; Mohiuddin, A.; Kaiser, L.: Rethinking attention with performers. arXiv preprint arXiv:2009.14794. (2020). https://doi.org/10.48550/arXiv.2009.14794

  35. Wang, S.; Li, B.Z.; Khabsa, M.; Fang, H.; Ma, H.: Linformer: self-attention with linear complexity. arXiv preprint arXiv:2006.04768. (2020). https://doi.org/10.48550/arXiv.2006.04768

  36. Ebrahimi, M.S.; Abadi, H.K.: Study of residual networks for image recognition intelligent computing. In: Proceedings of the computing conference, vol. 2, pp. 754–763. Springer,(2021). https://doi.org/10.1007/978-3-030-80126-7_53

  37. He, K.; Zhang, X.; Ren, S.; Sun, J.: Identity mappings in deep residual networks. In: Computer Vision–ECCV 2016: 14th European conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, (2016). https://doi.org/10.1109/ICSensT.2016.7796266

  38. Shao, J.: Linear model selection by cross-validation. J. Am. Stat. Assoc. 88, 486–494 (1993). https://doi.org/10.1080/01621459.1993.10476299

    Article  MathSciNet  Google Scholar 

  39. Hecht-Nielsen, R.: Theory of the backpropagation neural network Neural networks for perception, p. 65–93. Elsevier, Amsterdam (1992) https://doi.org/10.1109/IJCNN.1989.118638

    Book  Google Scholar 

  40. Chen, T.; Liu, X.; Xia, B.; Wang, W.; Lai, Y.: Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder. IEEE Access 8, 47072–47081 (2020). https://doi.org/10.1109/ACCESS.2020.2977892

    Article  Google Scholar 

  41. Kingma, D.P.; Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. (2014). https://doi.org/10.48550/arXiv.1412.6980

  42. Yao, Y.; Rosasco, L.; Caponnetto, A.: On early stopping in gradient descent learning. Constructive Approx 26, 289–315 (2007). https://doi.org/10.1007/s00365-006-0663-2

    Article  MathSciNet  Google Scholar 

  43. Xu, X.; Tao, Z.; Ming, W.; An, Q.; Chen, M.: Intelligent monitoring and diagnostics using a novel integrated model based on deep learning and multi-sensor feature fusion. Measurement 165, 108086 (2020). https://doi.org/10.1016/j.measurement.2020.108086

    Article  Google Scholar 

  44. Nagelkerke, N.J.: A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991). https://doi.org/10.2307/2337038

    Article  MathSciNet  Google Scholar 

  45. Qiao, H.; Wang, T.; Wang, P.; Qiao, S.; Zhang, L.: A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series. Sensors (2018). https://doi.org/10.3390/s18092932

    Article  Google Scholar 

  46. Zhao, R.; Wang, J.; Yan, R.; Mao, K.: Machine health monitoring with LSTM networks, In: 2016 10th international conference on sensing technology (ICST), pp. 1–6. (2016). https://doi.org/10.1109/ICSensT.2016.7796266

  47. Yu, W.; Huang, H.; Guo, R.; Yang, P.: Tool wear prediction based on attention long short-term memory network with small samples. Sens. Mater. (2023). https://doi.org/10.18494/SAM4509

    Article  Google Scholar 

  48. Liu, H.; Liu, Z.; Jia, W.; Zhang, D.; Wang, Q.; Tan, J.: Tool wear estimation using a CNN-transformer model with semi-supervised learning. Meas. Sci. Technol. 32, 125010 (2021). https://doi.org/10.1088/1361-6501/ac22ee

    Article  Google Scholar 

  49. Feng, Y.: Improving tool wear prediction with synthetic features from conditional generative adversarial networks. TechRxiv (2022). https://doi.org/10.36227/techrxiv.21253308.v1

    Article  Google Scholar 

Download references

Acknowledgements

This research acknowledges the financial and equipment support partially provided by the Department of Science and Technology of Jilin Province (20210201108GX).

Author information

Authors and Affiliations

Authors

Contributions

Zekai Si provided conceptualization, methodology, and software. Sumei Si provided validation, visualization, and data curation. Deqiang Mu approved supervision, and project administration.

Corresponding author

Correspondence to Deqiang Mu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, Z., Si, S. & Mu, D. Efficient Tool Wear Prediction in Manufacturing: BiLPReS Hybrid Model with Performer Encoder. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08943-5

Keywords

Navigation