Skip to main content
Log in

Effects of Homogenous–Heterogenous Reactions and Hybrid Nanofluid on Bödewadt Flow over a Permeable Stretching/Shrinking Rotating Disk with Radiation

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A nanofluid refers to the dispersion of nanoparticles in a regular fluid and has a unique application in various sectors, including medicine, engineering, and technology. When multiple nanoparticles are suspended in a regular fluid, it creates a hybrid nanofluid. In this study, we aim to investigate homogenous–heterogenous reactions in Bödewadt hybrid nanofluid flow over a permeable rotating disk with radiation. The base fluid chosen for this study is water (H2O), while the nanoparticles iron oxide (Fe3O4) and cobalt ferrite (CoFe2O4) are utilized to create the hybrid nanofluid. An appropriate method of similarity transformation is executed along a set of partial differential equations (PDEs) that were reduced to a system of nonlinear ordinary differential equations (ODEs). Numerical outcomes were then obtained via bvp4c in MATLAB software, with the influence of various parameters such as nanoparticle volume fraction, homogenous/heterogenous reaction strength parameters, suction, shrinking/stretching parameters, and radiation parameter. Additionally, asymptotic analysis was conducted to show that the concentration boundary layer on the disk can be performed subject to a large number of suctions. The present findings reveal that a rise in the volume fraction of nanoparticles results in a reduction in radial velocity profiles, temperature profiles, and tangential fields. As thermal radiation levels rise, a notable reduction in the local Nusselt number is evident. Moreover, there is an observed linear escalation in wall surface concentration when the heterogeneous strength parameter attains higher values. The presented results demonstrate that all flow fields are significantly affected by the participating parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No data associated in this manuscript.

References

  1. Choi, S.U.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL (United States) (1995).

  2. Qiu, L.; Wang, S.; Ma, Y.; Li, F.: Nanofluid and nanopowders. In: Micro and Nano Thermal Transport, pp. 247–284. Academic Press (2022). https://doi.org/10.1016/B978-0-12-823539-3.00008-8

  3. Godson, L.; Deepak, K.; Enoch, C.; Jefferson, B.; Raja, B.: Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch. Civ. Mech. Eng. 14(3), 489–496 (2014). https://doi.org/10.1016/j.acme.2013.08.002

    Article  Google Scholar 

  4. Abu Bakar, S.; Arifin, N.M.; Md Ali, F.; Bachok, N.; Nazar, R.; Pop, I.: A stability analysis on mixed convection boundary layer flow along a permeable vertical cylinder in a porous medium filled with a nanofluid and thermal radiation. Appl. Sci. 8(4), 483 (2018). https://doi.org/10.3390/app8040483

    Article  Google Scholar 

  5. Bakar, S.A.; Arifin, N.M.; Ali, F.M.; Bachok, N.: The effects of soret and dufour on mixed convection boundary layer flow of a porous media along a permeable surface filled with a nanofluid and radiation. J. Adv. Res. Fluid Mech. Therm. Sci. 53(1), 35–46 (2019)

    Google Scholar 

  6. Alhajaj, Z.; Bayomy, A.M.; Saghir, M.Z.: A comparative study on best configuration for heat enhancement using nanofluid. Int. J. Thermofluids 7, 100041 (2020). https://doi.org/10.1016/j.ijft.2020.100041

    Article  Google Scholar 

  7. Jamshed, W.: Numerical investigation of MHD impact on Maxwell nanofluid. Int. Commun. Heat Mass Transf. 120, 104973 (2021). https://doi.org/10.1016/j.icheatmasstransfer.2020.104973

    Article  Google Scholar 

  8. Sheikholeslami, M.; Arabkoohsar, A.; Ismail, K.A.: Entropy analysis for a nanofluid within a porous media with magnetic force impact using non-Darcy model. Int. Commun. Heat Mass Transf. 112, 104488 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104488

    Article  Google Scholar 

  9. Jamil, F.; Ali, H.M.: Applications of hybrid nanofluids in different fields. In: Hybrid Nanofluids for Convection Heat Transfer, pp. 215–254. Academic Press (2020). https://doi.org/10.1016/B978-0-12-819280-1.00006-9

  10. Ghadikolaei, S.S.; Yassari, M.; Sadeghi, H.; Hosseinzadeh, K.; Ganji, D.D.: Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 322, 428–438 (2017). https://doi.org/10.1016/j.powtec.2017.09.006

    Article  Google Scholar 

  11. Huminic, G.; Huminic, A.: Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int. J. Heat Mass Transf. 125, 82–103 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.059

    Article  Google Scholar 

  12. Waini, I.; Ishak, A.; Pop, I.: Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. Int. J. Heat Mass Transf. 136, 288–297 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101

    Article  Google Scholar 

  13. Aladdin, N.A.L.; Bachok, N.; Pop, I.: Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. Alex. Eng. J. 59(2), 657–666 (2020). https://doi.org/10.1016/j.aej.2020.01.028

    Article  Google Scholar 

  14. Bakar, S.A.; Arifin, N.M.; Bachok, N.; Ali, F.M.: Effect of thermal radiation and MHD on hybrid Ag-TiO2/H2O nanofluid past a permeable porous medium with heat generation. Case Stud. Therm. Eng. 28, 101681 (2021). https://doi.org/10.1016/j.csite.2021.101681

    Article  Google Scholar 

  15. Muhammad, K.; Hayat, T.; Alsaedi, A.; Ahmad, B.; Momani, S.: Mixed convective slip flow of hybrid nanofluid (MWCNTs+ Cu+ Water), nanofluid (MWCNTs+ Water) and base fluid (Water): a comparative investigation. J. Therm. Anal. Calorim. 143(2), 1523–1536 (2021). https://doi.org/10.1007/s10973-020-09577-z

    Article  Google Scholar 

  16. Gowda, R.P.; Kumar, R.N.; Aldalbahi, A.; Issakhov, A.; Prasannakumara, B.C.; Rahimi-Gorji, M.; Rahaman, M.: Thermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/downward moving disk. Surf. Interfaces 22, 100864 (2021). https://doi.org/10.1016/j.surfin.2020.100864

    Article  Google Scholar 

  17. Krishna, M.V.; Ahammad, N.A.; Chamkha, A.J.: Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Stud. Therm. Eng. 27, 101229 (2021). https://doi.org/10.1016/j.csite.2021.101229

    Article  Google Scholar 

  18. Rostami, S.; Toghraie, D.; Shabani, B.; Sina, N.; Barnoon, P.: Measurement of the thermal conductivity of MWCNT-CuO/water hybrid nanofluid using artificial neural networks (ANNs). J. Therm. Anal. Calorim. 143(2), 1097–1105 (2021). https://doi.org/10.1007/s10973-020-09458-5

    Article  Google Scholar 

  19. Wahid, N.S.; Arifin, N.M.; Khashi’ie, N.S.; Pop, I.; Bachok, N.; Hafidzuddin, E.H.: MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation. Int. J. Numer. Methods Heat Fluid Flow 32(5), 1706–1727 (2022). https://doi.org/10.1108/HFF-04-2021-0263

    Article  Google Scholar 

  20. Abu Bakar, S.; Wahid, N.S.; Arifin, N.M.; Khashi’ie, N.S.: The flow of hybrid nanofluid past a permeable shrinking sheet in a Darcy–Forchheimer porous medium with second-order velocity slip. Waves in Random and Complex Media, 1–18 (2022). Published online. https://doi.org/10.1080/17455030.2021.2020375

  21. Kármán, T.V.: Über laminare und turbulente Reibung. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 1(4), 233–252 (1921)

    Article  Google Scholar 

  22. Cochran, W.G.: The flow due to a rotating disc. In: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 30, No. 3, pp. 365–375. Cambridge University Press (1934).

  23. Fallah, B.; Dinarvand, S.; Eftekhari Yazdi, M.; Rostami, M.N.; Pop, I.: MHD flow and heat transfer of SiC-TiO2/DO hybrid nanofluid due to a permeable spinning disk by a novel algorithm. J. Appl. Comput. Mech. 5(5), 976–988 (2019)

    Google Scholar 

  24. Khan, M.; Ali, W.; Ahmed, J.: A hybrid approach to study the influence of Hall current in radiative nanofluid flow over a rotating disk. Appl. Nanosci. 10(12), 5167–5177 (2020). https://doi.org/10.1007/s13204-020-01415-w

    Article  Google Scholar 

  25. Tassaddiq, A.; Khan, S.; Bilal, M.; Gul, T.; Mukhtar, S.; Shah, Z.; Bonyah, E.: Heat and mass transfer together with hybrid nanofluid flow over a rotating disk. AIP Adv. 10(5), 055317 (2020)

    Article  Google Scholar 

  26. Gamachu, D.; Ibrahim, W.: Mixed convection flow of viscoelastic Ag-Al2O3/water hybrid nanofluid past a rotating disk. Phys. Scr. 96(12), 125205 (2021). https://doi.org/10.1088/1402-4896/ac1a89

    Article  Google Scholar 

  27. Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Nisar, K.S.; Jamshed, W.; Felemban, B.F.; Yahia, I.S.: MHD hybrid nanofluid flow due to rotating disk with heat absorption and thermal slip effects: an application of intelligent computing. Coatings 11(12), 1554 (2021). https://doi.org/10.3390/coatings11121554

    Article  Google Scholar 

  28. Khan, N.M.; Ahmad, S.; Ahammad, N.A.; Alqahtani, T.; Algarni, S.: Numerical investigation of hybrid nanofluid with gyrotactic microorganism and multiple slip conditions through a porous rotating disk. Waves in Random and Complex Media, 1–16 (2022). Published online. https://doi.org/10.1080/17455030.2022.2055205

  29. Bödewadt, V.U.: Die drehströmung über festem grunde. J. Appl. Math. Mech. (ZAMM) 20(5), 241–253 (1940)

    Article  Google Scholar 

  30. Mustafa, M.; Khan, J.A.; Hayat, T.; Alsaedi, A.: On Bödewadt flow and heat transfer of nanofluids over a stretching stationary disk. J. Mol. Liq. 211, 119–125 (2015). https://doi.org/10.1016/j.molliq.2015.06.065

    Article  Google Scholar 

  31. Joshi, V.K.; Ram, P.; Sharma, R.K.; Tripathi, D.: Porosity effect on the boundary layer Bodewadt flow of a magnetic nanofluid in the presence of geothermal viscosity. Eur. Phys. J. Plus 132(6), 1–10 (2017). https://doi.org/10.1140/epjp/i2017-11511-0

    Article  Google Scholar 

  32. Rafiq, T.; Mustafa, M.; Khan, J.A.: Numerical study of Bödewadt slip flow on a convectively heated porous disk in a nanofluid. Phys. Scr. 94(9), 095701 (2019). https://doi.org/10.1088/1402-4896/ab1549

    Article  Google Scholar 

  33. Hosseinzadeh, K.; Mardani, M.R.; Salehi, S.; Paikar, M.; Waqas, M.; Ganji, D.D.: Entropy generation of three-dimensional Bödewadt flow of water and hexanol base fluid suspended by Fe3O4 and MoS2 hybrid nanoparticles. Pramana 95(2), 1–14 (2021). https://doi.org/10.1007/s12043-020-02075-9

    Article  Google Scholar 

  34. Ramesh, G.K.; Aly, E.H.; Shehzad, S.A.; Abbasi, F.M.: Bödewadt flow and heat transfer of hybrid nanomaterial. Int. J. Ambient Energy 43(1), 3228–3236 (2022). https://doi.org/10.1080/01430750.2020.1818127

    Article  Google Scholar 

  35. Kameswaran, P.K.; Shaw, S.; Sibanda, P.V.S.N.; Murthy, P.V.S.N.: Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int. J. Heat Mass Transf. 57(2), 465–472 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.047

    Article  Google Scholar 

  36. Merkin, J.H.: A model for isothermal homogeneous-heterogeneous reactions in boundary-layer flow. Math. Comput. Model. 24(8), 125–136 (1996). https://doi.org/10.1016/0895-7177(96)00145-8

    Article  MathSciNet  Google Scholar 

  37. Anuar, N.S.; Bachok, N.; Pop, I.: Cu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditions. Mathematics 8(8), 1237 (2020). https://doi.org/10.3390/math8081237

    Article  Google Scholar 

  38. Alarabi, T.H.; Rashad, A.M.; Mahdy, A.: Homogeneous–heterogeneous chemical reactions of radiation hybrid nanofluid flow on a cylinder with joule heating: nanoparticles shape impact. Coatings 11(12), 1490 (2021). https://doi.org/10.3390/coatings11121490

    Article  Google Scholar 

  39. Khashi’ie, N.S.; Arifin, N.M.; Rosca, N.C.; Rosca, A.V.; Pop, I.: Three-dimensional flow of radiative hybrid nanofluid past a permeable stretching/shrinking sheet with homogeneous-heterogeneous reaction. Int. J. Numer. Methods Heat Fluid Flow 32(2), 568–588 (2021). https://doi.org/10.1108/HFF-01-2021-0017

    Article  Google Scholar 

  40. Waseem, M.; Gul, T.; Khan, I.; Khan, A.; Saeed, A.; Ali, I.; Kumam, P.: Gravity-driven hydromagnetic flow of couple stress hybrid nanofluid with homogenous-heterogeneous reactions. Sci. Rep. 11(1), 1–12 (2021). https://doi.org/10.1038/s41598-021-97045-5

    Article  Google Scholar 

  41. Haq, I.; Kumar, R.N.; Gill, R.; Madhukesh, J.K.; Khan, U.; Raizah, Z.; Jirawattanapanit, A.: Impact of homogeneous and heterogeneous reactions in the presence of hybrid nanofluid flow on various geometries. Front. Chem. 10, 1–12 (2022). https://doi.org/10.3389/fchem.2022.1032805

    Article  Google Scholar 

  42. Ullah, M.Z.: Radiative and Darcy-Forchheimer hybrid nanofluid flow over an inclined stretching surface due to nonlinear convection and homogeneous heterogeneous reactions. Waves in Random and Complex Media, 1–17 (2022). Published online. https://doi.org/10.1080/17455030.2022.2096944

  43. Waini, I.; Jamrus, F.N.; Kasim, A.R.M.; Ishak, A.; Pop, I.: Homogeneous-heterogeneous reactions on Al2O3-Cu hybrid nanofluid flow over a shrinking sheet. J. Adv. Res. Fluid Mech. Therm. Sci. 102(1), 85–97 (2023). https://doi.org/10.37934/arfmts.102.1.8597

    Article  Google Scholar 

  44. Rafiq, T.; Hashmi, M.M.: Bödewadt flow over a permeable disk with homogeneous-heterogeneous reactions: a numerical study. Appl. Sci. 9(19), 4046 (2019). https://doi.org/10.3390/app9194046

    Article  Google Scholar 

  45. Xie, H.; Jiang, B.; Liu, B.; Wang, Q.; Xu, J.; Pan, F.: An investigation on the tribological performances of the SiO2/MoS2 hybrid nanofluids for magnesium alloy-steel contacts. Nanoscale Res. Lett. 11(1), 1–17 (2016). https://doi.org/10.1186/s11671-016-1546-y

    Article  Google Scholar 

  46. Ho, C.J.; Liu, W.K.; Chang, Y.S.; Lin, C.C.: Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49(8), 1345–1353 (2010). https://doi.org/10.1016/j.ijthermalsci.2010.02.013

    Article  Google Scholar 

  47. Takabi, B.; Salehi, S.: Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv. Mech. Eng. 6, 147059 (2014). https://doi.org/10.1155/2014/147059

    Article  Google Scholar 

  48. Sheremet, M.A.; Pop, I.; Rosca, A.V.: The influence of thermal radiation on unsteady free convection in inclined enclosures filled by a nanofluid with sinusoidal boundary conditions. Int. J. Numer. Methods Heat Fluid Flow 28(8), 1738–1753 (2018). https://doi.org/10.1108/HFF-09-2017-0375

    Article  Google Scholar 

  49. Ahmed, N.; Tassaddiq, A.; Alabdan, R.; Adnan; Khan, U.; Noor, S.; Khan, I.: Applications of nanofluids for the thermal enhancement in radiative and dissipative flow over a wedge. Appl. Sci. 9(10), 1976 (2019). https://doi.org/10.3390/app9101976

    Article  Google Scholar 

  50. Von Kármán, T.: Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  Google Scholar 

  51. Chaudhary, M.A.; Merkin, J.H.: A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I Equal diffusivities. Fluid Dyn. Res. 16(6), 311–333 (1995). https://doi.org/10.1016/0169-5983(95)00015-6

    Article  MathSciNet  Google Scholar 

  52. Rahman, M.; Andersson, H.I.: On heat transfer in Bödewadt flow. Int. J. Heat Mass Transf. 112, 1057–1061 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.024

    Article  Google Scholar 

  53. Turkyilmazoglu, M.: Bödewadt flow and heat transfer over a stretching stationary disk. Int. J. Mech. Sci. 90, 246–250 (2015). https://doi.org/10.1016/j.ijmecsci.2014.10.022

    Article  Google Scholar 

  54. Mahyuddin, A.A.; Lok, Y.Y.; Ahmad, S.: Bödewadt flow and heat transfer in nanofluid over a permeable and radially stretching disk. Sains Malays. 51(2), 619–632 (2022). https://doi.org/10.17576/jsm-2022-5102-25

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Takasago Engineering Co. Ltd through the Grant number RK130000.7343.4B732, as well as to Universiti Teknologi Malaysia (UTM), Universiti Putra Malaysia (UPM) and Ministry of Higher Education Malaysia (MOHE). The work of Ioan Pop has been supported from the Grant PN-III-P4-PCE-2021-0993, UEFISCDI, Romania.

Author information

Authors and Affiliations

Authors

Contributions

S. A. B. performed computational analysis and wrote the paper; N. S. W. and N. M. A. developed the flow model, while I. P. validates the computational analysis and numerical results.

Corresponding author

Correspondence to Ioan Pop.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest or personal relationship were reported in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Bakar, S., Wahid, N.S., Md Arifin, N. et al. Effects of Homogenous–Heterogenous Reactions and Hybrid Nanofluid on Bödewadt Flow over a Permeable Stretching/Shrinking Rotating Disk with Radiation. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08909-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08909-7

Keywords

Navigation