Skip to main content
Log in

Incorporation of Nonlinear Control and SOSM Controller with Improved PSO Algorithm for OEWIM Fed by SVM Seven-Level Dual Inverter

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a combination of a nonlinear feedback linearization control (FLC) and a second-order sliding mode (SOSM) controller to enhance the effectiveness and performance of variable speed control in an open-ended winding induction motor (OEWIM). The literature indicates that the traditional FLC with a PI controller is susceptible to disruptions from its internals as well as outside interference. The conventional sliding-mode controller can offer robust control. However, it suffers from the chattering phenomenon. The SOSMC, based on a super-twisting algorithm (STA), was designed and implemented to overcome all of these drawbacks. It is extremely difficult to obtain the optimum parameters for each FLC and SOSM controller that give good results using traditional methods due to the relatively large number of parameters. Moreover, a novel approach based on the linearly decreasing method for both inertia weight and learning constant of the particle swarm optimization (PSO) algorithm was presented to improve the variable speed control of the OEWIM. To maintain a constant switching frequency, decrease harmonic distortion, and reduce common-mode voltage (CMV), a space vector modulation technique of a seven-level inverter is suggested and implemented by supplying each end of an open-ended stator winding induction motor with three-level inverters. The advantages of the suggested control system have been confirmed using simulated results of various tests of the complete system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Daoud, M.; Elserougi, A.A.; Massoud, A.M.; Bojoi, R.; Abdel-Khalik, A.S.; Ahmed, S.: Zero-/low-speed operation of multiphase drive systems with modular multilevel converters. IEEE Access 7, 14353–14365 (2019). https://doi.org/10.1109/access.2019.2893526

    Article  Google Scholar 

  2. Khadar, S.; Abu-Rub, H.; Kouzou, A.: Sensorless field-oriented control for open-end winding five-phase induction motor with parameters estimation. IEEE Open J. Indus. Electron. Soc. 2, 266–279 (2021). https://doi.org/10.1109/ojies.2021.3072232

    Article  Google Scholar 

  3. Jayakumar, V.; Bharatiraja, C.; Munda, J.L.: A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters. IEEE Access 9, 112104–112144 (2021). https://doi.org/10.1109/access.2021.3100346

    Article  Google Scholar 

  4. Ranjit, M., RameshBabu, V., and Jalluri, S. R.: “Performance analysis of multicarrier PWM techniques for dual inverter fed open end winding induction motor drive”. In: 2019 2nd International Conference on Power and Embedded Drive Control (ICPEDC), 2019, doi: https://doi.org/10.1109/icpedc47771.2019.9036509.

  5. Pires, V.F.; Cordeiro, A.; Foito, D.; Silva, F.; Romero-Cadaval, E.: Cascaded multilevel structure with three-phase and single-phase H-bridges for open-end winding induction motor drive. IEEE Open J. Indus. Electron. Soc. 4, 346–361 (2023). https://doi.org/10.1109/ojies.2023.3309652

    Article  Google Scholar 

  6. Nayli, A., Guizani, S. and Ben Ammar, F.: “Open-end winding induction machine supplied by two flying capacitor multilevel inverters”. In: 2013 International Conference on Electrical Engineering and Software Applications, Hammamet, Tunisia, 2013, https://doi.org/10.1109/ICEESA.2013.6578456.

  7. Korhonen, J., Peltoniemi, P., Nerg, J. and Silventoinen, P.: “Selected harmonic elimination pulse width modulation for open-end winding motors with a common DC link”. In: 2021 IEEE International Electric Machines & Drives Conference (IEMDC), Hartford, CT, USA, 2021, pp. 1-6, https://doi.org/10.1109/IEMDC47953.2021.9449528

  8. El-Hosainy, A., Hamed, H. A., Azazi, H. Z., and El-Kholy, E. E.: “A review of multilevel inverter topologies, control techniques, and applications”. In: 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2017, pp. 1265-1275, https://doi.org/10.1109/MEPCON.2017.8301344

  9. Surya Prakash, M. N., and Srinivas, S.:”Field oriented control of an open end winding induction machine with zero common mode voltage”. In: 2017 National Power Electronics Conference (NPEC), Pune, India, 2017, pp. 352-357, https://doi.org/10.1109/NPEC.2017.8310484

  10. Meesala, R.E.K.; Kumar, T.V.: An improved direct torque control of three-level dual inverter fed open-ended winding induction motor drive based on modified look-up table. IEEE Trans. Power Electron. 35(4), 3906–3917 (2020). https://doi.org/10.1109/tpel.2019.2937684

    Article  Google Scholar 

  11. Khadar, S.; Kouzou, A.; Hafaifa, A.; Iqbal, A.: Investigation on SVM-Backstepping sensorless control of five-phase open-end winding induction motor based on model reference adaptive system and parameter estimation. Eng. Sci. Technol. Int. J. 22(4), 1013–1026 (2019). https://doi.org/10.1016/j.jestch.2019.02.008

    Article  Google Scholar 

  12. Zhu, B., Rajashekara, K., and Kubo, H.: “A novel predictive current control for open-end winding induction motor drive with reduced computation burden and enhanced zero sequence current suppression. In: 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 2017, pp. 552-557, https://doi.org/10.1109/APEC.2017.7930748

  13. Khadar, S., Abu-Rub, H. and Kouzou, A.: “ Sensorless sliding mode control of open-end dual-stator induction motor using extended kalman filter. In: 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 2021, pp. 1136–1141, https://doi.org/10.1109/SSD52085.2021.9429471

  14. Dendouga, A.: A comparative study between the PI and SM controllers used by nonlinear control of induction motor fed by SVM matrix converter. IETE J. Res. 68(4), 3019–3029 (2020). https://doi.org/10.1080/03772063.2020.1743781

    Article  Google Scholar 

  15. A. Dendouga, “Combined nonlinear feedback strategy and sliding mode controller for high performance matrix converter-fed induction motor drives. Dendouga J. Control Eng. Appl. Inform. 2015, https://doi.org/10.61416/ceai.v17i2.2485

  16. De Jesús Rubio, J.; Hernández, M.A.; Rosas, F.J.; Orozco, E.A.; Balcazar, R.; Pacheco, J.: “Genetic high-gain controller to improve the position perturbation attenuation and compact high-gain controller to improve the velocity perturbation attenuation in inverted pendulums.” Neural Netw. (2024). https://doi.org/10.1016/j.neunet.2023.11.029

    Article  Google Scholar 

  17. de Jesús, R.J.: Bat algorithm based control to decrease the control energy consumption and modified bat algorithm based control to increase the trajectory tracking accuracy in robots. Neural Netw. 1(161), 437–448 (2023). https://doi.org/10.1016/j.neunet.2023.02.010

    Article  Google Scholar 

  18. Lughofer, E.; Škrjanc, I.: Evolving error feedback fuzzy model for improved robustness under measurement noise. IEEE Trans. Fuzzy Syst. 31(3), 997–1008 (2023). https://doi.org/10.1109/tfuzz.2022.3193451

    Article  Google Scholar 

  19. Rubio, J.D.; Orozco, E.; Cordova, D.A.; Islas, M.A.; Pacheco, J.; Gutierrez, G.J.; Zacarias, A.; Soriano, L.A.; Meda-Campaña, J.A.; Mujica-Vargas, D.: Modified linear technique for the controllability and observability of robotic arms. IEEE Access 4(10), 3366–3377 (2022). https://doi.org/10.1109/access.2021.3140160

    Article  Google Scholar 

  20. Soriano, L.A.; Zamora, E.; Vazquez-Nicolas, J.M.; Hernández, G.; Barraza Madrigal, J.A.; Balderas, D.: PD control compensation based on a cascade neural network applied to a robot manipulator. Front. Neurorobot. 14, 577749 (2020). https://doi.org/10.3389/fnbot.2020.577749

    Article  Google Scholar 

  21. Silva-Ortigoza, R., et al.: Sensorless tracking control for a ‘full-bridge buck inverter—DC motor’ system: passivity and flatness-based design. IEEE Access 9, 132191–132204 (2021). https://doi.org/10.1109/access.2021.3112575

    Article  Google Scholar 

  22. Khadar, S.; Abdelaziz, A.Y.; Elbarbary, Z.M.S.; Mossa, M.A.: An improved sensorless nonlinear control based on SC-MRAS estimator of open-end winding five-phase induction motor fed by dual NPC inverter: hardware-in-the-loop implementation. Machines 11(4), 469 (2023). https://doi.org/10.3390/machines11040469

    Article  Google Scholar 

  23. Dendouga, A.: Feedback linearization associated to a sliding mode controller for an operating with unity power factor of induction motor fed by matrix converter. SN Appl. Sci. 2(5), 879 (2020). https://doi.org/10.1007/s42452-020-2674-7

    Article  Google Scholar 

  24. Dendouga, A.: Conventional and second order sliding mode control of permanent magnet synchronous motor fed by direct matrix converter: comparative study. Energies 13(19), 5093 (2020). https://doi.org/10.3390/en13195093

    Article  Google Scholar 

  25. Utkin, V.I.; Poznyak, A.S.; Orlov, Y.; Polyakov, A.: Conventional and high order sliding mode control. J. Franklin Inst. 357(15), 10244–10261 (2020). https://doi.org/10.1016/j.jfranklin.2020.06.018

    Article  MathSciNet  Google Scholar 

  26. Abd Ali, J.; Hannan, M.A.; Mohamed, A.: Improved indirect field-oriented control of induction motor drive based PSO algorithm. J. Teknol. (2016). https://doi.org/10.11113/jt.v78.8888

    Article  Google Scholar 

  27. Vukašinović, J.; Štatkić, S.; Milovanović, M.; Arsić, N.; Perović, B.: Combined method for the cage induction motor parameters estimation using two-stage PSO algorithm. Electr. Eng. 105(5), 2703–2714 (2023). https://doi.org/10.1007/s00202-023-01849-9

    Article  Google Scholar 

  28. Dusari, A.; Ram, T.B.: A simplified space-vector Pwm for three level inverters applied to passive and motor load. Int. J. Sci. Eng. Adv. Technol. IJSEAT 2(8), 268–275 (2014)

    Google Scholar 

  29. Zhuo, G.; Hostettler, J.D.; Gu, P.; Wang, X.: Robust sliding mode control of permanent magnet synchronous generator-based wind energy conversion systems. Sustainability 8(12), 1265 (2016). https://doi.org/10.1109/ECCE.2016.7855409

    Article  Google Scholar 

  30. Borlaug, I.-L. G.: “Higher-order sliding mode control - stability analysis and application to underwater snake robots,” Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017

  31. Nouaoui, T., Dendouga, A., and Bendaikha, A.: “Fractional order PID tuned using symbiotic organism search algorithm for field oriented control of the permanent magnet synchronous motor." In: 2023 International Conference on Advances in Electronics, Control and Communication Systems (ICAECCS), BLIDA, Algeria, 2023, pp. 1–5, doi: https://doi.org/10.1109/ICAECCS56710.2023.10104667

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Lamine Ladjel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladjel, M.L., Dendouga, A. Incorporation of Nonlinear Control and SOSM Controller with Improved PSO Algorithm for OEWIM Fed by SVM Seven-Level Dual Inverter. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08894-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08894-x

Keywords

Navigation