Skip to main content
Log in

Optimizing Cyclic Response of Non-Ductile RC Joints Subjected to Heat Using Stainless-Steel Expanded Metal Sheet Mesh

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Beam-column (B-C) joints are recognized as critical regions in reinforced concrete (RC) moment-resisting frames when subjected to seismic loads. Furthermore, these joints may be subjected to high temperatures during their lifespan, which might cause severe structural damage. Accordingly, the seismic response of RC beam-column joints that were subjected to heat (i.e., 400 °C and 600 °C) was investigated in the present experimental work. The joint specimens were divided into three categories: Three joints were kept as is (i.e., reference joints; no strengthening is applied), whereas six joints were strengthened with one and two layers of stainless-steel expanded metal sheet mesh (SSEMSM) in order to improve their performance. To investigate the seismic performance of the joints, a quasi-static cyclic load was applied to the joints to simulate a seismic load. Results showed that the average maximum load for joints strengthened with one and two layers of SSEMSM, respectively, was increased by 11% and 21% at ambient temperature and by 2% and 9% at 400 °C, in comparison with the reference joint. In addition, using one and two layers of SSEMSM, respectively, led to achieving an average of 91% and 100% of the full capacity of the reference joint for B-C joints subjected to 600 °C. Furthermore, the experimental findings show a considerable improvement in the cyclic response of non-ductile RC joints that were strengthened with the SSEMSM strategy and subjected to high temperatures (i.e., higher load capacity, greater displacement, higher dissipated energy, higher ductility, and slower degradation in the secant stiffness).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

All data used in the study will be available from the corresponding author upon reasonable request.

References

  1. Uma, S.; Prasad, A.M.: Seismic behavior of beam column joints in reinforced concrete moment resisting frames. Document no: IITK-GSDMA-EQ32-V1 0, final report: a-earthquake codes, IITK-GSDMA Project on Building Codes (2015)

  2. Azimi, M.; Campos, U.A.; Matthews, J.C.; Lu, H.; Tehrani, F.M.; Sun, S.; Alam, S.: Experimental and numerical study of cyclic performance of reinforced concrete exterior connections with rectangular-spiral reinforcement. J. Struct. Eng. 146(3), 04019219 (2020). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002506

    Article  Google Scholar 

  3. Parthasarathi, N.; Satyanarayanan, K.S.; Prakash, M.; Noroozinejad Farsangi, E.; Thirumurugan, V.; Srinivasasenthil, S.: Progressive collapse evaluation of Rc frames under high-temperature conditions: experimental and finite element investigations. Structures 41, 375–388 (2022). https://doi.org/10.1016/j.istruc.2022.05.037

    Article  Google Scholar 

  4. Shannag, M.J.; Barakat, S.; Abdul-Kareem, M.: Cyclic behavior of HPFRC-repaired reinforced concrete interior beam-column joints. Mater. Struct. 35(6), 348–356 (2002). https://doi.org/10.1007/BF02483154

    Article  CAS  Google Scholar 

  5. Shannag, M.J.; Alhassan, M.A.: Seismic upgrade of interior beam-column subassemblages with high-performance fiber-reinforced concrete jackets. ACI Struct. J. 102(1), 131–138 (2005)

    Google Scholar 

  6. Zhang, X.; Li, B.: Seismic performance of RC beam-column joints constructed with engineered cementitious composites. J. Struct. Eng. 146(12), 04020271 (2020). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002824

    Article  ADS  Google Scholar 

  7. Suhail, R.; Amato, G.; Alam, M.S.; Broderick, B.; Grimes, M.; McCrum, D.: Seismic retrofitting of nonseismically detailed exterior reinforced concrete beam-column joint by active confinement using shape memory alloy wires. J. Struct. Eng. 149(3), 04023003 (2023). https://doi.org/10.1061/JSENDH.STENG-11843

    Article  Google Scholar 

  8. Ghobarah, A.; El-Amoury, T.: Seismic rehabilitation of deficient exterior concrete frame joints. J. Compos. Construct. 9(5), 408–416 (2005). https://doi.org/10.1061/(asce)1090-0268(2005)9:5(408)

    Article  CAS  Google Scholar 

  9. Hertz, K.D.: Concrete strength for fire safety design. Mag. Concr. Res. 57(8), 445–453 (2005). https://doi.org/10.1680/macr.2005.57.8.445

    Article  Google Scholar 

  10. Al-Rousan, R.Z.; Barfed, M.H.: Impact of curvature type on the behavior of slender reinforced concrete rectangular column confined with CFRP composite. Compos. B Eng. 173, 106939 (2019). https://doi.org/10.1016/j.compositesb.2019.106939

    Article  CAS  Google Scholar 

  11. Arioz, O.: Effects of elevated temperatures on properties of concrete. Fire Saf. J. 42(8), 516–522 (2007). https://doi.org/10.1016/j.firesaf.2007.01.003

    Article  CAS  Google Scholar 

  12. Netinger, I.; Kesegic, I.; Guljas, I.: The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates. Fire Saf. J. 46(7), 425–430 (2011). https://doi.org/10.1016/j.firesaf.2011.07.002

    Article  CAS  Google Scholar 

  13. Xargay, H.; Folino, P.; Sambataro, L.; Etse, G.: Temperature effects on failure behavior of self-compacting high strength plain and fiber reinforced concrete. Constr. Build. Mater. 165, 723–734 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.137

    Article  CAS  Google Scholar 

  14. Li, L.-Z.; Liu, X.; Yu, J.-T.; Lu, Z.-D.; Su, M.-N.; Liao, J.-H.; Xia, M.: Experimental study on seismic performance of post-fire reinforced concrete frames. Eng. Struct. 179, 161–173 (2019). https://doi.org/10.1016/j.engstruct.2018.10.080

    Article  Google Scholar 

  15. Al-Rousan, R.Z.: Impact of elevated temperature and anchored grooves on the shear behavior of reinforced concrete beams strengthened with CFRP composites. Case Stud. Constr. Mater. 14, e00487 (2021). https://doi.org/10.1016/j.cscm.2021.e00487

    Article  Google Scholar 

  16. Al-Rousan, R.Z.; Alkhawaldeh, A.: Numerical simulation of the influence of bond strength degradation on the behavior of reinforced concrete beam-column joints externally strengthened with FRP sheets. Case Stud. Constr. Mater. 15, e00567 (2021). https://doi.org/10.1016/j.cscm.2021.e00567

    Article  Google Scholar 

  17. Al-Rousan, R.Z.; Alkhawaldeh, A.: Behavior of heated damaged reinforced concrete beam-column joints strengthened with FRP. Case Stud. Constr. Mater. 15, e00584 (2021). https://doi.org/10.1016/j.cscm.2021.e00584

    Article  Google Scholar 

  18. Murad, Y.Z.; Alseid, B.H.: Retrofitting interior RC beam-to-column joints subjected to quasi-static loading using NSM CFRP ropes. Structures 34, 4158–4168 (2021). https://doi.org/10.1016/j.istruc.2021.10.024

    Article  Google Scholar 

  19. Alkhawaldeh, A.A.; Al-Rousan, R.Z.: Upgrading cyclic response of heat-damaged RC beam-column joints using CFRP sheets. Case Stud. Constr. Mater. 17, e01699 (2022). https://doi.org/10.1016/j.cscm.2022.e01699

    Article  Google Scholar 

  20. Alkhawaldeh, A.A.; Alrousan, R.Z.: Improving cyclic response of heat-damaged non-ductile RC joints using CFRP hybrid systems. Constr. Build. Mater. 377, 131150 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131150

    Article  CAS  Google Scholar 

  21. Priestley, M.N.; Seible, F.; Xiao, Y.: Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength–part 2: test results and comparison with theory. Struct. J. 91(5), 537–551 (1994)

    Google Scholar 

  22. Ramírez, J.L.; Bárcena, J.M.; Urreta, J.I.; Sanchez, J.A.: Efficiency of short steel jackets for strengthening square section concrete columns. Constr. Build. Mater. 11(5), 345–352 (1997). https://doi.org/10.1016/S0950-0618(97)00056-1

    Article  Google Scholar 

  23. Xiao, Y.; Wu, H.: Retrofit of reinforced concrete columns using partially stiffened steel jackets. J. Struct. Eng. 129(6), 725–732 (2003). https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(725)

    Article  Google Scholar 

  24. Adam, J.M.; Ivorra, S.; Pallarés, F.J.; Giménez, E.; Calderón, P.A.: Axially loaded RC columns strengthened by steel caging finite element modelling. Constr. Build. Mater. 23(6), 2265–2276 (2009). https://doi.org/10.1016/j.conbuildmat.2008.11.014

    Article  Google Scholar 

  25. Garzón-Roca, J.; Adam, J.M.; Calderón, P.A.: Behaviour of RC columns strengthened by steel caging under combined bending and axial loads. Constr. Build. Mater. 25(5), 2402–2412 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.045

    Article  Google Scholar 

  26. Sezen, H.; Miller, E.A.: Experimental evaluation of axial behavior of strengthened circular reinforced-concrete columns. J. Bridg. Eng. 16(2), 238–247 (2011). https://doi.org/10.1061/(ASCE)BE.1943-5592.0000143

    Article  Google Scholar 

  27. Murat Engindeniz, L.F.K.; Abdul-Hamid, Z.: Repair and strengthening of reinforced concrete beam-column joints state of the art. ACI Struct. J. 102(2), 187–197 (2005). https://doi.org/10.14359/14269

    Article  Google Scholar 

  28. Pohoryles, D.A.; Melo, J.; Rossetto, T.; Varum, H.; Bisby, L.: Seismic retrofit schemes with FRP for deficient RC beam-column joints: state-of-the-art review. J. Compos. Constr. 23(4), 03119001 (2019). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000950

    Article  CAS  Google Scholar 

  29. Borujerdi, A.S.; Mostofinejad, D.; Hwang, H.-J.; Salimian, M.S.: Evaluation of structural performance for beam-column joints with high-strength materials under cyclic loading using PIV technique. J. Build. Eng. 44, 103283 (2021). https://doi.org/10.1016/j.jobe.2021.103283

    Article  Google Scholar 

  30. Choi, S.-H.; Kim, J.-H.; Jeong, H.; Kim, K.S.: Seismic behavior of beam-column joints with different concrete compressive strengths. J Build. Eng. 52, 104484 (2022). https://doi.org/10.1016/j.jobe.2022.104484

    Article  Google Scholar 

  31. Abdalla, K.M.; Al-Rousan, R.; Alhassan, M.A.; Lagaros, N.D.: Finite-element modelling of concrete-filled steel tube columns wrapped with CFRP. Proc. Inst. Civ. Eng. Struct. Build. 173(11), 844–857 (2019). https://doi.org/10.1680/jstbu.19.00011

    Article  Google Scholar 

  32. Ruiz-Pinilla, J.G.; Cladera, A.; Pallarés, F.J.; Calderón, P.A.; Adam, J.M.: Joint strengthening by external bars on RC beam-column joints. J. Build. Eng. 45, 103445 (2022). https://doi.org/10.1016/j.jobe.2021.103445

    Article  Google Scholar 

  33. Hung, C.-C.; Hsiao, H.-J.; Shao, Y.; Yen, C.-H.: A comparative study on the seismic performance of RC beam-column joints retrofitted by ECC, FRP, and concrete jacketing methods. J. Build. Eng. 64, 105691 (2023). https://doi.org/10.1016/j.jobe.2022.105691

    Article  Google Scholar 

  34. Habib, A.; Yildirim, U.; Eren, O.: Seismic behavior and damping efficiency of reinforced rubberized concrete jacketing. Arab. J. Sci. Eng. 46(5), 4825–4839 (2021). https://doi.org/10.1007/s13369-020-05191-1

    Article  Google Scholar 

  35. Ou, Y.-C.; Joju, J.; Hsieh, M.-Y.: Seismic behavior of reinforced concrete beam-column joints with unstressed steel strands fully or partially used for beam longitudinal reinforcement. J. Build. Eng. 67, 105932 (2023). https://doi.org/10.1016/j.jobe.2023.105932

    Article  Google Scholar 

  36. Iyappan, G.; Elango, D.: Strengthening of RC square column using stainless steel wire mesh. Int. J. Constr. Res. Civ. Eng. 3(3), 16–23 (2017). https://doi.org/10.20431/2454-8693.0303002

    Article  Google Scholar 

  37. Al-Rousan, R.Z.: Behavior of auxetic steel wire RC columns exposed to elevated temperature. Lat. Am. J. Solids Struct. 18(2), 351 (2021). https://doi.org/10.1590/1679-78256422

    Article  Google Scholar 

  38. Alhassan, M.A.; Al-Rousan, R.Z.; Abu-Elhija, A.M.: Anchoring holes configured to enhance the bond-slip behavior between CFRP composites and concrete. Constr. Build. Mater. 250, 118905 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118905

    Article  CAS  Google Scholar 

  39. Elflah, M.; Theofanous, M.; Dirar, S.: Behaviour of stainless steel beam-to-column joints-part 2: numerical modelling and parametric study. J. Constr. Steel Res. 152, 194–212 (2019). https://doi.org/10.1016/j.jcsr.2018.04.017

    Article  Google Scholar 

  40. Mustaffar, A.; Harvey, A.; Reay, D.: Melting of phase change material assisted by expanded metal mesh. Appl. Therm. Eng. 90, 1052–1060 (2015). https://doi.org/10.1016/j.applthermaleng.2015.04.057

    Article  CAS  Google Scholar 

  41. Chen, Z.; Niu, X.; Liu, J.; Khan, K.; Liu, Y.: Seismic study on an innovative fully-bolted beam-column joint in prefabricated modular steel buildings. Eng. Struct. 234, 111875 (2021). https://doi.org/10.1016/j.engstruct.2021.111875

    Article  Google Scholar 

  42. He, A.; Liang, Y.; Zhao, O.: Experimental and numerical studies of austenitic stainless steel CHS stub columns after exposed to elevated temperatures. J. Constr. Steel Res. 154, 293–305 (2019). https://doi.org/10.1016/j.jcsr.2018.12.005

    Article  Google Scholar 

  43. Makawana, R.V.; Joshi, D.D.; Patel, P.V.: Seismic strengthening of precast beam column connection using stainless steel wire mesh (SSWM). In: Shrikhande M, Agarwal P, Kumar PCA (eds) Proceedings of 17th Symposium on Earthquake Engineering (Vol. 2), Singapore, 2023//2023. Springer Nature: Singapore, pp. 607–619

  44. Patel, P.V.; Joshi, D.D.; Makawana, R.V.: Experimental studies on confined compressive strength of stainless steel wire mesh (SSWM) wrapped concrete columns. Mater. Today Proc. 93, 453–459 (2023). https://doi.org/10.1016/j.matpr.2023.08.087

    Article  CAS  Google Scholar 

  45. Kazemzadeh Azad, S.; Li, D.; Uy, B.: Axial slenderness limits for austenitic stainless steel-concrete composite columns. J. Constr. Steel Res. 166, 105856 (2020). https://doi.org/10.1016/j.jcsr.2019.105856

    Article  Google Scholar 

  46. Motter, C.J.; Opabola, E.; Elwood, K.J.; Henry, R.S.: Seismic behavior of nonductile reinforced concrete beam-column frame subassemblies. J. Struct. Eng. 145(12), 04019157 (2019). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002438

    Article  Google Scholar 

  47. ASTM.: ASTM E119: Standard test methods for fire tests of building construction and materials. West Conshohocken, Pa: ASTM (2011)

  48. ISO384.: Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland, pp. 1–25 (1999)

  49. Al-Rousan, R.Z.; Alkhawaldeh, A.A.: Experimental cyclic response of heat-damaged RC beam-column joints strengthened with CFRP strings. Structures. 57, 105169 (2023). https://doi.org/10.1016/j.istruc.2023.105169

    Article  Google Scholar 

  50. ACI318.: Building code requirements for reinforced concrete and commentary. American Concrete Institute, Farmington Hills, MI, USA (2019)

Download references

Acknowledgements

The author gratefully acknowledges the financial support from the Deanship of Scientific Research at Jordan University of Science and Technology under Grant number 2021/28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayah A. Alkhawaldeh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhawaldeh, A.A., Al-Rousan, R.Z. Optimizing Cyclic Response of Non-Ductile RC Joints Subjected to Heat Using Stainless-Steel Expanded Metal Sheet Mesh. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08893-y

Keywords

Navigation