Skip to main content
Log in

Experimental Investigation of Improved DC-Offset Compensation Loop for Flux Estimator in IPMSM Position and Speed Sensorless Control Drives

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The flux observer method is widely utilized as a sensorless control technique in which the stator or rotor flux of IPMSM can be measured with a closed-loop observer or an integrator. However, DC-offset (DCoff), the ramp signal, and harmonics are consistently present in the acquired rotor flux because of an unidentified starting value, errors in the integral computation's current detection, and the inverter's nonlinearity. The aforementioned interference signals will drastically reduce the sensorless control efficacy. This work introduces an enhanced flux estimator with a negative feedback loop and PI controller to overcome the DC drift problem resulting from a pure integrator and a low-pass filter. Moreover, an optimal design approach of flux estimator structures with a broad range of speeds for Interior permanent magnet synchronous motor (IPMSM) drives is proposed, which utilizes an integrated topology of the voltage and current models incorporating a DC-offset PI-correction loop, actual and estimated flux magnitude's correction error. The flux vector's initial inaccuracy is eliminated, together with the DCoff and drift in the acquisition channel. A phase-locked-loop state estimator is utilized to derive the speed and position from the actual and estimated flux. The effectiveness and superiority of the suggested approach were proven by simulation and experimental findings for the IPMSM drives, which displayed high dynamic performances over varying scenarios. This reliable approach, including sensorless control, is suitable for all AC motors with sinusoidal flux distributions over a wide speed range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Abubakar, U.; Wang, X.; Shah, S.H.; Wang, L.; Farouk, A.: Electromagnetic and thermal analysis of 225 kW high-speed PMSM for centrifugal blower applications. Energies 15, 3370 (2022)

    Article  CAS  Google Scholar 

  2. Shin, M.-H.; Hyun, D.-S.; Cho, S.-B.; Choe, S.-Y.: An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Trans. Power Electron. 15, 312–318 (2000)

    Article  ADS  Google Scholar 

  3. Wang, Y.; Xu, Y.; Niimura, N.; Rudolph, B.D.; Lorenz, R.D.: Using volt-second sensing to directly improve torque accuracy and self-sensing at low speeds. IEEE Trans. Ind. Appl. 53, 4472–4482 (2017)

    Article  Google Scholar 

  4. Hule S.V.; Bindu R.; Vincent D.: Sensorless vector control of three phase induction motor. In: Proc. Conference on Advances in Communication and Computing Technologies, 1–6 (2014)

  5. Shah, S.H.; Wang, X.; Azeem, M.; Abubakar, U.: Coupled magnetic field and thermal analysis model for an IPMSM with modular three-phase winding topologies for fault-tolerant applications. IEEE Access 10, 30335–30348 (2022)

    Article  Google Scholar 

  6. Li, Y.; Hu, H.; Shi, P.: A review of position sensorless compound control for PMSM drives. World Electric Vehicle J. 14, 34 (2023)

    Article  CAS  Google Scholar 

  7. Wu, C.; Sun, X.; Wang, J.: A rotor flux observer of permanent magnet synchronous motors with adaptive flux compensation. IEEE Trans. Energy Convers. 34(4), 2106–2117 (2019)

    Article  ADS  Google Scholar 

  8. Holtz, J.; Quan, J.: Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification. IEEE Trans. Ind. Appl. 38(4), 1087–1095 (2002)

    Article  Google Scholar 

  9. Comanescu, M.; Xu, L.: An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors. IEEE Trans. Industr. Electron. 53, 50–56 (2006)

    Article  Google Scholar 

  10. Choudhury, A.; Chatterjee, K.: Modified stator flux estimation-based direct torque controlled induction motor drive with constant switching frequency operation. Int. J. Power Electron. 4, 566 (2012)

    Article  Google Scholar 

  11. Idris, N.R.N.; Yatim, A.H.M.: An improved stator flux estimation in steady-state operation for direct torque control of induction machines. IEEE Trans. Ind. Appl. 38, 110–116 (2002)

    Article  Google Scholar 

  12. Hinkkanen, M.; Luomi, J.: Modified integrator for voltage model flux estimation of induction motors. IEEE Trans. Industr. Electron. 50, 818–820 (2003)

    Article  Google Scholar 

  13. Stojic, D.; Milinkovic, M.; Veinovic, S.; Klasnic, I.: Improved stator flux estimator for speed sensorless induction motor drives. IEEE Trans. Power Electron. 30, 2363–2371 (2015)

    Article  ADS  Google Scholar 

  14. Bose, B.K.; Patel, N.R.: A programmable cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive. IEEE Trans. Industr. Electron. 44, 140–143 (1997)

    Article  Google Scholar 

  15. Tan G.; Xu X.; Ye Z.; Han Y.; Guo P.: Dual three-level double-fed induction motor control based on novel stator flux observer.In: Proc. International Conference on Electrical and Control Engineering, 3668–3671 (2010)

  16. Wang, Y.; Deng, Z.: Improved stator flux estimation method for direct torque linear control of parallel hybrid excitation switched-flux generator. IEEE Trans. Energy Convers. 27, 747–756 (2012)

    Article  ADS  Google Scholar 

  17. Wang, Y.; Deng, Z.: An integration algorithm for stator flux estimation of a direct-torque-controlled electrical excitation flux-switching generator. IEEE Trans. Energy Convers. 27, 411–420 (2012)

    Article  ADS  Google Scholar 

  18. Hu, J.; Wu, B.: New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans. Power Electron. 13, 969–977 (1998)

    Article  ADS  Google Scholar 

  19. Wu, R.; Slemon, G.R.: A permanent magnet motor drive without a shaft sensor. IEEE Trans. Ind. Appl. 27, 1005–1011 (1991)

    Article  Google Scholar 

  20. Holtz, J.; Quan, J.: Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors. IEEE Trans. Ind. Appl. 39(4), 1052–1060 (2003)

    Article  Google Scholar 

  21. Hackl, C.M.; Landerer, M.: Modified second-order generalized integrators with modified frequency locked loop for fast harmonics estimation of distorted single-phase signals. IEEE Trans. Power Electron. 35, 3298–3309 (2020)

    Article  ADS  Google Scholar 

  22. Wang, H.; Yang, Y.; Ge, X.; Zuo, Y.; Yue, Y.; Li, S.: PLL- and FLL-based speed estimation schemes for speed-sensorless control of induction motor drives: review and new attempts. IEEE Trans. Power Electron. 37, 3334–3356 (2022)

    Article  ADS  Google Scholar 

  23. Xin, Z.; Zhao, R.; Blaabjerg, F.; Zhang, L.; Loh, P.C.: An improved flux observer for field-oriented control of induction motors based on dual second-order generalized integrator frequency-locked loop. IEEE J. Emerg. Select. Topics Power Electron. 5, 513–525 (2017)

    Article  Google Scholar 

  24. Zhao, R.; Xin, Z.; Loh, P.C.; Blaabjerg, F.: A novel flux estimator based on multiple second-order generalized integrators and frequency-locked loop for induction motor drives. IEEE Trans. Power Electron. 32, 6286–6296 (2017)

    Article  ADS  Google Scholar 

  25. Ciobotaru M.; Teodorescu R.; Blaabjerg F.: A new single-phase PLL structure based on second order generalized integrator. In: 2006 37th IEEE Power Electronics Specialists Conference, Jeju, Korea (South), 2006

  26. Wang, G., et al.: Enhanced position observer using second-order generalized integrator for sensorless interior permanent magnet synchronous motor drives. IEEE Trans. Energy Convers. 29(2), 486–495 (2014)

    Article  Google Scholar 

  27. Xu, W.; Jiang, Y.; Mu, C.; Blaabjerg, F.: Improved nonlinear flux observer-based second-order SOIFO for PMSM sensorless control. IEEE Trans. Power Electron. 34(1), 565–579 (2019)

    Article  ADS  Google Scholar 

  28. Park, Y.; Sul, S.: Sensorless control method for PMSM based on frequency-adaptive disturbance observer. IEEE J. Emerg. Sel. Topics Power Electron 2(2), 143–151 (2014)

    Article  Google Scholar 

  29. Park, Y.; Kim, H.; Sul, S.: Frequency-adaptive observer to extract AC coupled signals for grid synchronization. IEEE Trans. Ind. Appl. 53(1), 273–282 (2017)

    Article  Google Scholar 

  30. Kim, H.; Sul, S.; Yoo, H.; Oh, J.: Distortion-minimizing flux observer for IPMSM based on frequency-adaptive observers. IEEE Trans. Power Electron. 35(2), 2077–2087 (2020)

    Article  ADS  Google Scholar 

  31. Rahman, S.U.; Xia, C.: Rotor speed and position estimation analysis of interior PMSM machines in low and medium-high speed regions adopting an improved flux observer for electric vehicle applications. Machines 11, 574 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadiq Ur Rahman.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, S.U., Chaoying, X., Abubakar, U. et al. Experimental Investigation of Improved DC-Offset Compensation Loop for Flux Estimator in IPMSM Position and Speed Sensorless Control Drives. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08873-2

Keywords

Navigation