Skip to main content
Log in

Hyper-Elastic Characterization of Polydimethylsiloxane by Optimization Algorithms and Finite Element Methods

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study explores the mechanical properties of incompressible isotropic material polydimethylsiloxane (PDMS) using hyper-elastic constitutive models. It comprises two main parts: an experimental phase involving the creation of a new PDMS formulation and stress–strain evaluation through uniaxial tensile loading, and a theoretical phase where six hyper-elastic models are applied to the stress–strain data using finite element methods and optimization algorithms. Elastic compatibility and Drucker’s stability criterion provide the determination of material constants, integrated into the generalized reduced gradient and constrained particle swarm optimization (C-PSO) algorithm for optimization. The performance of these models is assessed via the coefficient of determination. The Reduced Polynomial model, with six material parameters optimized through C-PSO, emerges as the top choice, closely matching experimental data at various strain levels. Subsequent finite element simulations validate the behavior of the Reduced Polynomial model under the same conditions as the tensile testing, showing excellent agreement with experimental results. Analyzing rubber-like materials and their composites using commercial finite element software is challenging due to their non-linear properties, motivating the use of optimization algorithms to determine material properties accurately. This research’s novelty lies in using C-PSO and GRG solver to examine polymeric materials, yielding highly efficient and precise results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Algorithm 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.: Polydimethylsiloxane (PDMS)-based flexible resistive strain sensors for wearable applications. Apl. Sci. 8(3), 345 (2018). https://doi.org/10.3390/app8030345

    Article  CAS  Google Scholar 

  2. Wang, P.; Wei, W.; Li, Z.; Duan, W.; Han, H.; Xie, Q.: A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance. J. Mater. Chem. A. 8(6), 3509–3516 (2020). https://doi.org/10.1039/C9TA13281C

    Article  CAS  Google Scholar 

  3. Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y.: Stretchable electronics based on PDMS substrates. Adv. Mater. 33(6), 2003155 (2021). https://doi.org/10.1002/adma.202003155

    Article  CAS  Google Scholar 

  4. Casanova-Moreno, J.; To, J.; Yang, C.W.T.; Turner, R.F.B.; Bizzotto, D.; Cheung, K.C.: Fabricating devices with improved adhesion between PDMS and gold-patterned glass. Sens. Act. B Chem. 246, 904–909 (2017). https://doi.org/10.1016/j.snb.2017.02.109

    Article  CAS  Google Scholar 

  5. Teixeira, A.; Hernández-Rodríguez, J.F.; Wu, L.; Oliveira, K.; Kant, K.; Piairo, P.; Diéguez, L.; Abalde-Cela, S.: Microfluidics-driven fabrication of a low cost and ultrasensitive SERS-based paper biosensor. Appl. Sci. (2019). https://doi.org/10.3390/app9071387

    Article  Google Scholar 

  6. Akther, F.; Yakob, S.B.; Nguyen, N.T.; Ta, H.T.: Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors (2020). https://doi.org/10.3390/bios10110182

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zulfiqar, S.; Saad, A.A.; Ahmad, Z.; Yusof, F.; Bachok, Z.: Structural analysis and material characterization of silver conductive ink for stretchable electronics. Int. J. Integr. Eng. 13(7), 128–135 (2021)

    Google Scholar 

  8. Izdihar, K.; Razak, H.R.A.; Supion, N.; Karim, M.K.A.; Osman, N.H.; Norkhairunnisa, M.: Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom. Appl. Sci. 11(3), 1–13 (2021). https://doi.org/10.3390/app11031172

    Article  CAS  Google Scholar 

  9. Hassler, C.; Boretius, T.; Stieglitz, T.: Polymers for neural implants. J. Polym. Sci. Part B: Polym. Phys. 49(1), 18–33 (2011). https://doi.org/10.1002/polb.22169

    Article  ADS  CAS  Google Scholar 

  10. Kim, J.H.; Lau, K.T.; Shepherd, R.; Wu, Y.; Wallace, G.; Diamond, D.: Performance characteristics of a polypyrrole modified polydimethylsiloxane (PDMS) membrane based microfluidic pump. Sens. Act. A Phys. 148(1), 239–244 (2008). https://doi.org/10.1016/j.sna.2008.07.029

    Article  CAS  Google Scholar 

  11. Raj, K.; Chakraborty, M.S.: PDMS microfluidics: a mini review. J. Appl. Polym. Sci. 137(27), 48958 (2020). https://doi.org/10.1002/app.48958

    Article  CAS  Google Scholar 

  12. Borók, A.; Laboda, K.; Bonyár, A.: PDMS bonding technologies for microfluidic applications: A review. Biosensors 11(8), 1–28 (2021). https://doi.org/10.3390/bios11080292

    Article  CAS  Google Scholar 

  13. Eduok, U.; Faye, O.; Szpunar, J.: Recent developments and applications of protective silicone coatings: a review of PDMS functional materials. Prog. Org. Coat. 111, 124–163 (2017). https://doi.org/10.1016/j.porgcoat.2017.05.012

    Article  CAS  Google Scholar 

  14. Zielecka, M.; Rabajczyk, A.; Pastuszka, Ł; Jurecki, L.: Flame resistant silicone-containing coating materials. Coatings (2020). https://doi.org/10.3390/COATINGS10050479

    Article  Google Scholar 

  15. Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24(3), (2014). https://doi.org/10.1088/0960-1317/24/3/035017

  16. Al-Halhouli, A.T.; Demming, S.; Dietzel, A.; Bcuttgenbach, S.: Design, fabrication, and characterization of a continuous flow micropump system. J. Therm. Sci. Eng. Appl. (2016). https://doi.org/10.1115/1.4031922

    Article  Google Scholar 

  17. Palchesko, R.N.; Zhang, L.; Y. SunA.W. Feinberg,: Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve. PLoS ONE. 7(12), (2012). https://doi.org/10.1371/journal.pone.0051499

  18. Schneider, F.; Fellner, T.; Wilde, J.; Wallrabe, U.: Mechanical properties of silicones for MEMS. J. Micromech. Microeng. (2008). https://doi.org/10.1088/0960-1317/18/6/065008

    Article  Google Scholar 

  19. Vaicekauskaite, J.; Mazurek, P.; Vudayagiri, S.; Skov, A.L.: Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers. J. Mater. Chem. C. 8(4), 1273–1279 (2020). https://doi.org/10.1039/C9TC05072H

    Article  CAS  Google Scholar 

  20. Beda, T.: Modeling hyperelastic behavior of rubber: a novel invariant-based and a review of constitutive models. J. Polym. Sci. Part B: Polym. Phys. 45(13), 1713–1732 (2007). https://doi.org/10.1002/polb.20928

    Article  ADS  CAS  Google Scholar 

  21. Zulfiqar, S.; Saad, A.; Ahmad, Z.; Yusof, F.; Fakpan, K.: Analysis and characterization of Polydimethylsiloxane (PDMS) substrate by using uniaxial tensile test and Mooney–Rivlin hyperelastic model. J. Adv. Manu. Technol. 16(1), 1 (2022)

    Google Scholar 

  22. Meng, F.; Terentjev, E.M.: Transient network at large deformations: Elastic–Plastic transition and necking instability. Polymers (Basel) 8(4), 108 (2016). https://doi.org/10.3390/polym8040108

    Article  CAS  PubMed  Google Scholar 

  23. Siviour, C.R.; Jordan, J.L.: High strain rate mechanics of polymers: a review. J. Dyn. Behav. Mater. 2, 15–32 (2016). https://doi.org/10.1007/s40870-016-0052-8

    Article  Google Scholar 

  24. Cao, G.; Gao, H.: Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater Sci. 103, 558–595 (2019). https://doi.org/10.1016/j.pmatsci.2019.03.002

    Article  CAS  Google Scholar 

  25. Melly, S.K.; Liu, L.; Liu, Y.; Leng, J.: A review on material models for isotropic hyperelasticity. Int. J. Mech. Syst. Dyn. 1, 71–88 (2021). https://doi.org/10.1002/msd2.12013

    Article  Google Scholar 

  26. Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear. Mech. 40, 271–279 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.05.007

    Article  ADS  Google Scholar 

  27. Nkenfack, A.N.; Beda, T.; Feng, Z.-Q.; Peyraut, F.: HIA: a hybrid integral approach to model incompressible isotropic hyperelastic materials-Part 2: finite element analysis. Int. J. Non-Linear. Mech. 86, 146–157 (2016). https://doi.org/10.1016/j.ijnonlinmec.2016.08.009

    Article  ADS  Google Scholar 

  28. Khalajmasoumi, M.; Koloor, S.S.R.; Arefnia, A.; Ibrahim, I.S.; Yatim, J.M.: Finite element analysis of curvature precast polymer panel for temporary support of tunnels. Appl. Mech. Mater. 229–231, 771–777 (2012). https://doi.org/10.4028/www.scientific.net/AMM.229-231.771

    Article  CAS  Google Scholar 

  29. Lopez-Pamies, O.: A new I1-based hyperelastic model for rubber elastic materials. Comptes Rendus-Mec. 338(1), 3–11 (2010). https://doi.org/10.1016/j.crme.2009.12.007

    Article  ADS  MathSciNet  CAS  Google Scholar 

  30. Ayoub, G.; Zaïri, F.; Fréderix, C.; Gloaguen, J.M.; Naït-Abdelaziz, M.; Seguela, R.; Lefebvre, J.M.: Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: experiments and constitutive modelling. Int. J. Plast. 27(4), 492–511 (2011). https://doi.org/10.1016/j.ijplas.2010.07.005

    Article  CAS  Google Scholar 

  31. Rathod, M.L.; Pareek, N.; Agrawal, S.; Jaddivada, S.; Lee, D.W.; Gundiah, N.: Engineered ridge and micropillar array detectors to quantify the directional migration of fibroblasts. RSC Adv. 7(81), 51436–51443 (2017). https://doi.org/10.1039/c7ra09068d

    Article  ADS  CAS  Google Scholar 

  32. Wang, Y.; Wang, H.; Liu, F.; Wu, X.; Xu, J.; Cui, H.; Wu, Y.; Xue, R.; Tian, C.; Zheng, B.; Yao, W.: Flexible printed circuit board based on graphene/polyimide composites with excellent thermal conductivity and sandwich structure. Compos. Part A Appl. Sci. Manuf. 138, 106075 (2020). https://doi.org/10.1016/j.compositesa.2020.106075

    Article  CAS  Google Scholar 

  33. He, H.; Zhang, Q.; Zhang, Y.; Chen, J.; Zhang, L.; Li, F.: A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Sci. Nano Mater. (2021). https://doi.org/10.1016/j.nanoms.2021.07.003

    Article  Google Scholar 

  34. Hossain, M.; Steinmann, P.: More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study. J. Mech. Behav. Mater. 22, 27–50 (2013). https://doi.org/10.1515/jmbm-2012-0007

    Article  CAS  Google Scholar 

  35. Abdelsalam, A.A.; Araby, S.; Hassan, M.A.; El-Moneim, A.A.: Constitutive modelling of elastomer/graphene platelet nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 244(1), 8 (2017). https://doi.org/10.1088/1757-899X/244/1/012016

    Article  Google Scholar 

  36. Tobajas, R.; Elduque, D.; Javierre, C.; Ibarz, E.; Gracia, L.: A comparative study of hyperelastic constitutive models for an automotive shaft seal material. Int. J. Serv. Comput. Oriented Manuf. 3(2–3), 171–189 (2018). https://doi.org/10.1504/IJSCOM.2018.091614

    Article  Google Scholar 

  37. Wu, Y.; Wang, H.; Li, A.: Parameter identification methods for hyperelastic and hyper-viscoelastic models. Appl. Sci. 6(12), 386 (2016). https://doi.org/10.3390/app6120386

    Article  Google Scholar 

  38. Fernández, J.R.; López-Campos, J.A.; Segade, A.; Vilán, J.A.: A genetic algorithm for the characterization of hyperelastic materials. Appl. Math. Comput. 329, 239–250 (2018). https://doi.org/10.1016/j.amc.2018.02.008

    Article  MathSciNet  Google Scholar 

  39. Blaise, B.B.; Betchewe, G.; Beda, T.: Optimization of the model of Ogden energy by the genetic algorithm method. Appl. Rheol. 29, 21–29 (2019). https://doi.org/10.1515/arh-2019-0003

    Article  Google Scholar 

  40. Ramzanpour, M.; Hosseini-Farid, M.; Ziejewski, M.; Karami, G.: Particle swarm optimization method for hyperelastic characterization of soft tissues. In: Conference: ASME 2019 International Mechanical Engineering Congress and Exposition (2019). https://doi.org/10.1115/IMECE2019-11829

  41. Duan, Y.; Harley, R.G.; Habetler, T.G. Comparison of particle swarm optimization and genetic algorithm in the design of permanent magnet motors. In: IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China. pp. 822–825 (2009). https://doi.org/10.1109/IPEMC.2009.5157497

  42. Rivlin, R.S.; Taylor, G.I.: Large elastic deformations of isotropic materials. I. Fundamental concepts. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 240, 459–490 (1948). https://doi.org/10.1098/rsta.1948.0002

    Article  ADS  MathSciNet  Google Scholar 

  43. Aloui, S.; El Yaagoubi, M.: Determining the compression-equivalent deformation of SBR-based rubber material measured in tensile mode using the finite element method. Appl. Mech. 2(1), 195–208 (2021). https://doi.org/10.3390/applmech2010012

    Article  Google Scholar 

  44. Romanov, K.I.: The Drucker stability of a material. J. Appl. Math. Mech. 65(1), 155–162 (2001). https://doi.org/10.1016/S0021-8928(01)00017-X

    Article  Google Scholar 

  45. Guo, Z.; Sluys, L.J.: Application of a new constitutive model for the description of rubber-like materials under monotonic loading. Int. J. Solids Struct. 43(9), 2799–2819 (2006). https://doi.org/10.1016/j.ijsolstr.2005.06.026

    Article  Google Scholar 

  46. Staber, B.; Guilleminot, J.: Stochastic hyperelastic constitutive laws and identification procedure for soft biological tissues with intrinsic variability. J. Mech. Behav. Biomed. Mater. 65, 743–752 (2017). https://doi.org/10.1016/j.jmbbm.2016.09.022

    Article  CAS  PubMed  Google Scholar 

  47. Hamdia, K.M.; Zhuang, X.; He, P.; Rabczuk, T.: Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using Bayesian method. Compos. Sci. Technol. 126, 122–129 (2016). https://doi.org/10.1016/j.compscitech.2016.02.012

    Article  CAS  Google Scholar 

  48. Kennedy, J.; Eberhart, R.C.: Particle swarm optimization. In: IEEE Conference on Neural Networks, Perth, Australia. pp. 1942–1948 (1995)

  49. Thompson, J.R.; Nelson-Quillin, H.D.; Coyle, E.J.; Vernon, J.P.; Harper, E.S.; Mills, M.S.: Particle swarm optimization of polymer-embedded broadband metasurface reflectors. Opt. Express 29, 43421–43434 (2021). https://doi.org/10.1364/OE.444112

    Article  ADS  CAS  Google Scholar 

  50. Jamil, S.; Roy, A.M.: An efficient and robust Phonocardiography (PCG)-based Valvular Heart Diseases (VHD) detection framework using Vision Transformer (ViT). Comput. Biol. Med. 158, 1–15 (2023). https://doi.org/10.1016/j.compbiomed.2023.106734

    Article  Google Scholar 

  51. Ramzanpour, M.; Hosseini-Farid, M.; Ziejewski, M.; Karami, G.: A constrained particle swarm optimization algorithm for hyperelastic and visco-hyperelastic characterization of soft biological tissues. Int. J. Comput. Methods Eng. Sci. Mech. 21(4), 169–184 (2020). https://doi.org/10.1080/15502287.2020.1767725

    Article  MathSciNet  Google Scholar 

  52. Eberhart, R. C.; Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: IEEE 2023 Congress on Evolutionary Computation. pp. 84–88 (2000). https://doi.org/10.1109/CEC.2000.870279

  53. Chanda, A.; Ruchti, T.; Unnikrishnan, V.: Computational modeling of wound suture: a review. IEEE Rev. Biomed. Eng. 11, 165–176 (2018). https://doi.org/10.1109/RBME.2018.2804219

    Article  PubMed  Google Scholar 

  54. Ribeiro, J.E.; Lopes, H.; Martins, P.; Braz-César, M.: Mechanical analysis of PDMS material using biaxial test. AIMS Mater. Sci. 6(1), 97–110 (2019). https://doi.org/10.3934/matersci.2019.1.97

    Article  CAS  Google Scholar 

  55. Dhote, S.; Behdinan, K.; Andrysek, J.; Bian, J.: Experimental investigation of a hybrid nickel-carbon black polydimethylsiloxane conductive nanocomposite. J. Compos. Mater. 54(15), 2051–2063 (2019). https://doi.org/10.1177/0021998319890406

    Article  CAS  Google Scholar 

  56. Souza, A.; Marques, E.; Balsa, C.; Ribeiro, J.: Characterization of shear strain on PDMS: numerical and experimental approaches. Appl. Sci. (2020). https://doi.org/10.3390/app100933226

    Article  Google Scholar 

  57. Bien-aime, L.K.M.; Blaise, B.B.; Beda, T.: Characterization of hyperelastic deformation behavior of rubber-like materials. SN Appl. Sci. 2, 648 (2020). https://doi.org/10.1007/s42452-020-2355-6

    Article  Google Scholar 

  58. Hashemi, S.H.; Mousavi Dehghani, S.A.; Samimi, S.E.; Dinmohammad, M.; Hashemi, S.A.: Performance comparison of GRG algorithm with evolutionary algorithms in an aqueous electrolyte system. Model. Earth Syst. Environ. 6, 2103–2110 (2020). https://doi.org/10.1007/s40808-020-00818-6

    Article  Google Scholar 

  59. Phothiphatcha, J.; Puttapitukporn, T.: Determination of material parameters of PDMS material models by MATLAB. Eng. J. 25(4), 11–28 (2021). https://doi.org/10.4186/ej.2021.25.4.11

    Article  Google Scholar 

  60. Dya, T.; Blaise, B.B.; Betchewe, G.; Alidou, M.: Implementation of particle swarm optimization algorithm in Matlab Code for hyperelastic characterization. World J. Mech. 11, 146–163 (2021). https://doi.org/10.4236/wjm.2021.117011

Download references

Acknowledgements

The authors would like to acknowledge the support of Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme to the School of Mechanical Engineering, Universiti Sains Malaysia (USM) and Higher Education Commission (HEC) of Pakistan.

Funding

This research is funded by Fundamental Research Grant Scheme (FRGS) with project code: FRGS/1/2022/TK10/USM/02/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Aziz Saad.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, S., Saad, A.A., Huqqani, I.A. et al. Hyper-Elastic Characterization of Polydimethylsiloxane by Optimization Algorithms and Finite Element Methods. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08814-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08814-z

Keywords

Navigation