Skip to main content
Log in

Characterization and Evaluation of Bamboo Species for Construction Applications Incorporating TOPSIS, AHP and VIKOR

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bamboo, recognized as a versatile and eco-friendly construction material, has garnered substantial interest in recent times. This study undertakes a comprehensive assessment of five bamboo species—Bullet, Deluxe, Choti Khunti, Premium, and Kanaat. The primary objective is to evaluate their suitability for construction practices. The investigation initiates with an analysis of the bamboo species density and moisture content, shedding light on their physical properties and durability. The results reveal notable variations, with Choti Khunti bamboo boasting the highest density and the lowest moisture content, signifying its potential resilience. Additionally, the study scrutinizes the shrinkage behavior of these bamboo species concerning changes in thickness, diameter, and length under varying temperatures. Deluxe bamboo shows compressive and tensile strengths of 82.64 N/mm2 and 151.95 N/mm2, respectively. In the term of bending strength, Kanaat bamboo exhibits the highest bending strength of 319.26 N/mm2. To facilitate decision-making, three multi-criteria decision-making (MCDM) methods—TOPSIS, AHP, and VIKOR—are employed to rank these bamboo species based on their overall laboratory performance. The consensus among these methods places deluxe bamboo in the top position, followed by bullet, thus positioning deluxe as the most promising bamboo species for construction applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data that has been used is confidential.

References

  1. Li, Z.; Liu, C.-P.; Yu, T.: Laminate of reformed bamboo and extruded fiber-reinforced cementitious plate. J. Mater. Civ. Eng. 14, 359–365 (2002). https://doi.org/10.1061/(ASCE)0899-1561(2002)14:5(359)

    Article  CAS  Google Scholar 

  2. Mahdavi, M.; Clouston, P.L.; Arwade, S.R.: Development of laminated bamboo lumber: review of processing, performance, and economical considerations. J. Mater. Civ. Eng. 23, 1036–1042 (2011). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000253

    Article  Google Scholar 

  3. Mitch, D.; Harries, K.A.; Sharma, B.: Characterization of splitting behavior of bamboo culms. J. Mater. Civ. Eng. 22, 1195–1199 (2010). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000120

    Article  Google Scholar 

  4. Du, J.; Yang, K.-L.; Yuan, Z.-Q.; Liu, Z.-M.; Li, X.-Y.; Liu, S.-J.; Li, C.-C.; Meng, S.; Wu, R.-M.: Effect of physical treatment methods on the properties of natural bamboo materials. Constr. Build. Mater. 394, 132170 (2023). https://doi.org/10.1016/J.CONBUILDMAT.2023.132170

    Article  CAS  Google Scholar 

  5. Luan, Y.; Yang, Y.; Chen, L.; Ma, Y.; Jiang, M.; Fei, B.; Liu, H.; Ma, X.; Zhang, X.; Sun, F.; Fang, C.: Effects of integrated process of flattening and densification on the gradient structure and properties of Moso Bamboo. Constr. Build. Mater. (2023). https://doi.org/10.1016/j.conbuildmat.2023.132073

    Article  Google Scholar 

  6. Cai, X.; Wang, M.; Lu, Y.; Noori, A.; Chen, J.; Chen, F.; Chen, L.; Jiang, X.; Zhang, Q.: Experimental study on the dynamic tensile failure of bamboo. Constr. Build. Mater. 392, 131886 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131886

    Article  Google Scholar 

  7. Zhang, X.; Yang, S.; Fei, B.; Qin, D.; Yang, J.; Li, H.; Wang, X.: Bending and shear performance of a cross-laminated composite consisting of flattened bamboo board and Chinese fir lumber. Constr. Build. Mater. 392, 131913 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131913

    Article  Google Scholar 

  8. Bala, A.; Gupta, S.: Engineered bamboo and bamboo-reinforced concrete elements as sustainable building materials: a review. Constr. Build. Mater. 394, 132116 (2023). https://doi.org/10.1016/J.CONBUILDMAT.2023.132116

    Article  CAS  Google Scholar 

  9. Han, S.; Xu, H.; Chen, F.; Wang, G.: Construction relationship between a functionally graded structure of bamboo and its strength and toughness: underlying mechanisms. Constr. Build. Mater. 379, 131241 (2023). https://doi.org/10.1016/J.CONBUILDMAT.2023.131241

    Article  CAS  Google Scholar 

  10. Govindan, B.; Ramasamy, V.; Panneerselvam, B.; Rajan, D.: Performance assessment on bamboo reinforced concrete beams. Innov. Infrastruct. Solut. 7, 1–3 (2022)

    Article  Google Scholar 

  11. Dey, A.; Chetia, N.: Experimental study of bamboo reinforced concrete beams having various frictional properties. Mater. Today Proc. 5(1), 436–444 (2018)

    Article  CAS  Google Scholar 

  12. Agarwal, A.; Nanda, B.; Maity, D.: Experimental investigation on chemically treated bamboo reinforced concrete beams and columns. Constr. Build. Mater. 71, 610–617 (2014)

    Article  Google Scholar 

  13. Mali, P.R.; Datta, D.: Experimental evaluation of bamboo reinforced concrete beams. J. Build. Eng. 28, 101071 (2020)

    Article  Google Scholar 

  14. Mali, P.R.; Datta, D.: Experimental evaluation of bamboo reinforced concrete slab panels. Constr. Build. Mater. 188, 1092–1100 (2018)

    Article  Google Scholar 

  15. Parasuram, M.; Baskaran, K.: Study on bamboo and steel as hybrid reinforcement for concrete slab. In: 2020 Moratuwa Engineering Research Conference (Mercon) (IEEE), pp. 13–18 (2020)

  16. Ghavami, K.: Bamboo as reinforcement in structural concrete elements. Cem. Concr. Compos. 27(6), 637–649 (2005)

    Article  CAS  Google Scholar 

  17. Archila, H.; Kaminski, S.; Trujillo, D.; Zea Escamilla, E.; Harries, K.A.: Bamboo reinforced concrete: a critical review. Mater. Struct. 51, 1–8 (2018). https://doi.org/10.1617/S11527-018-1228-6

    Article  CAS  Google Scholar 

  18. Kumar, P.; Gautam, P.; Kaur, S.; Chaudhary, M.; Afreen, A.; Mehta, T.: Bamboo as reinforcement in structural concrete. Mater. Today Proc. 1(46), 6793–6799 (2021)

    Article  Google Scholar 

  19. IS 6874, Method of tests for bamboo: Bureau of Indian Standards, https://archive.org/details/gov.in.is.6874.2008

  20. Plebankiewicz, E.; Kubek, D.: Multicriteria selection of the building material supplier using AHP and Fuzzy AHP. J. Constr. Eng. Manag. 142, 04015057 (2016). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001033

    Article  Google Scholar 

  21. Chou, C.C.: Integrated short-term and long-term MCDM model for solving location selection problems. J. Transp. Eng. 135, 880–893 (2009). https://doi.org/10.1061/(ASCE)TE.1943-5436.0000057

    Article  Google Scholar 

  22. Liu, G.; Zhou, Z.; Xu, M.: Interval grey fuzzy uncertain linguistic sets and their application to ranking of construction project risk factors. J. Highw. Trans. Res. Dev. (Engl. Ed.) 12, 73–80 (2018). https://doi.org/10.1061/JHTRCQ.0000628

    Article  Google Scholar 

  23. Nayak, A.; Bajaj, A.S.; Jain, A.; Khandelwal, A.; Tiwari, H.: Replacement of steel by bamboo reinforcement. IOSR J. Mech. Civ. Eng. (IOSR-JMCE) 8(1), 50–61 (2013)

    Article  Google Scholar 

  24. Akwada, D.R.; Akinlabi, E.T.: Bamboo use in construction industry: How sustainable is it. DII–2015. 148 (2015)

  25. Yadav, M.; Mathur, A.: Bamboo as a sustainable material in the construction industry: an overview. Mater. Today Proc. 43, 2872–2876 (2021)

    Article  Google Scholar 

  26. Harison, A.; Agrawal, A.; Imam, A.; Harison, A.: Bamboo as an alternative to steel for green construction towards low cost housing. J. Environ. Nanotechnol. 6(2), 100–104 (2017). https://doi.org/10.13074/jent.2017.06.172257

    Article  Google Scholar 

  27. Ramesh, M.; Deepa, C.; Ravanan, A.: Bamboo fiber reinforced concrete composites. Bamboo Fiber Compos. Process. Prop. Appl. (2021). https://doi.org/10.1007/978-981-15-8489-3_8

    Article  Google Scholar 

  28. Akeju, T.A.; Falade, F.: Utilization of bamboo as reinforcement in concrete for low-cost housing. In: Structural Engineering Mechanics and Computation, pp. 1463–1470. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  29. Mark, A.A.; Russell, A.O.: A comparative study of Bamboo reinforced concrete beams using different stirrup materials for rural construction. Int. J. Civ. Struct. Eng. 2(2), 407–423 (2011). https://doi.org/10.6088/ijcser.00202010120

    Article  Google Scholar 

  30. Seethalakshmi, K.; Kumar, M.; Pillai, K.; Sarojam, N.: Bamboos of India: a compendium. Brill, Leiden (1998)

    Book  Google Scholar 

  31. Tewari, S.; Negi, H.; Kaushal, R.: Status of bamboo in India. Int. J. Econ. Plants 6(1), 30–39 (2019)

    Article  Google Scholar 

  32. Temiz, N.; Tecim, V.: The use of GIS and multi-criteria decision-making as a decision tool in forestry. OR Insight 22, 105–123 (2009). https://doi.org/10.1057/ORI.2008.8

    Article  Google Scholar 

  33. Kabir, G.; Sadiq, R.; Tesfamariam, S.: A review of multi-criteria decision-making methods for infrastructure management. Struct. Infrastruct. Eng. 10, 1176–1210 (2014). https://doi.org/10.1080/15732479.2013.795978

    Article  Google Scholar 

  34. Caterino, N.; Iervolino, I.; Manfredi, G.; Cosenza, E.: Multi-criteria decision making for seismic retrofitting of RC structures. J. Earthquake Eng. 12, 555–583 (2008). https://doi.org/10.1080/13632460701572872

    Article  Google Scholar 

  35. Chourabi, Z.; Khedher, F.; Babay, A.; Cheikhrouhou, M.: Multi-criteria decision making in workforce choice using AHP, WSM and WPM. J. Text. Inst. 110, 1092–1101 (2019). https://doi.org/10.1080/00405000.2018.1541434

    Article  Google Scholar 

  36. Ebad Ardestani, M.; Sharifi Teshnizi, E.; Babakhani, P.; Mahdad, M.; Golian, M.: An optimal management approach for agricultural water supply in accordance with sustainable development criteria using MCDM (TOPSIS) (Case study of Poldasht catchment in West Azerbaijan Province-Iran). J. Appl. Water Eng. Res. 8, 88–107 (2020). https://doi.org/10.1080/23249676.2020.1761896

    Article  Google Scholar 

  37. Hwang, C.L.; Yoon, K.; Hwang, C.L.; Yoon, K.: Methods for multiple attribute decision making. Mult. Attrib. Decis. Mak. Methods Appl. State Art Surv. (1981). https://doi.org/10.1007/978-3-642-48318-9_3

    Article  Google Scholar 

  38. Çakır, Ö.; Dilbas, H.: Durability properties of treated recycled aggregate concrete: effect of optimized ball mill method. Constr. Build. Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2020.121776

    Article  Google Scholar 

  39. Şimşek, B.; Uygunoǧlu, T.: Multi-response optimization of polymer blended concrete: a TOPSIS based Taguchi application. Constr. Build. Mater. 117, 251–262 (2016). https://doi.org/10.1016/j.conbuildmat.2016.05.027

    Article  CAS  Google Scholar 

  40. Liu, L.; Wu, A.; Yu, H.; Wang, N.; Li, H.: Comprehensive evaluation of operations management of a hospital by TOPSIS and GRA. Chin. Med. Rec. Engl. Ed. 2, 351–354 (2014). https://doi.org/10.3109/23256176.2014.988977

    Article  Google Scholar 

  41. Gopinath, C.; Lakshmanan, P.; Palani, S.: Fiber laser microcutting on duplex steel: parameter optimization by TOPSIS. Mater. Manuf. Processes 37, 985–994 (2022). https://doi.org/10.1080/10426914.2021.1981939

    Article  CAS  Google Scholar 

  42. Sun, X.; Guo, C.; Cui, J.: Research on evaluation method of water resources carrying capacity based on improved TOPSIS model. La Houille Blanche 106(5), 68–74 (2020). https://doi.org/10.1051/LHB/2020040

    Article  ADS  Google Scholar 

  43. Li, Z.; Luo, Z.; Wang, Y.; Fan, G.; Zhang, J.: Suitability evaluation system for the shallow geothermal energy implementation in region by entropy weight method and TOPSIS method. Renew. Energy 184, 564–576 (2022). https://doi.org/10.1016/J.RENENE.2021.11.112

    Article  ADS  Google Scholar 

  44. Ran, W.; Wang, S.; Shen, X.; Wang, Y.; Li, Y.: Mechanical properties of the semi-rigid subgrade of roads for the replacement cement with pyrolysis residues of oil sludge. Constr. Build. Mater. 27(367), 129341 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129341

    Article  CAS  Google Scholar 

  45. Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Manage. Sci. 32, 841–855 (1986). https://doi.org/10.1287/MNSC.32.7.841

    Article  MathSciNet  ADS  Google Scholar 

  46. Saaty, T.L.; Vargas, L.G.: Diagnosis with dependent symptoms: Bayes theorem and the analytic hierarchy process. Oper. Res. 46, 491–502 (1998). https://doi.org/10.1287/OPRE.46.4.491

    Article  Google Scholar 

  47. Lin, Y.-H.; Lee, P.-C.; Chang, T.-P.: Applying gray relational analysis with gray numbers to qualitative identification of the origin of hydraulic cement clinker by trace elements. J. Mater. Civ. Eng. 20, 539–543 (2008). https://doi.org/10.1061/(ASCE)0899-1561(2008)20:8(539)

    Article  CAS  Google Scholar 

  48. Azadi, A.; Zareian, G.; Shakeri, S.: Digital Mapping of soil fertility for some agricultural lands by using Fuzzy-AHP (FAHP) techniques and GIS in highly calcareous soil, southwest Iran. Commun. Soil Sci. Plant Anal. (2023). https://doi.org/10.1080/00103624.2023.2245413

    Article  Google Scholar 

  49. Costache, R.; Ali, S.A.; Parvin, F.; Pham, Q.B.; Arabameri, A.; Nguyen, H.; Crăciun, A.; Anh, D.T.: Detection of areas prone to flood-induced landslides risk using certainty factor and its hybridization with FAHP, XGBoost and deep learning neural network. Geocarto Int. 37, 7303–7338 (2022). https://doi.org/10.1080/10106049.2021.1973115

    Article  ADS  Google Scholar 

  50. Fang, S.; Chen, Y.; Bao, Y.; Yang, X.; Ma, D.: A new reliability evaluation method of injection/falloff testing interpretation in coal reservoir based on FAHP and cloud model. Energy Sour. Part A Recover. Util. Environ. Eff. 25, 1–7 (2020). https://doi.org/10.1080/15567036.2020.1760405

    Article  CAS  Google Scholar 

  51. Liao, C.N.; Fu, Y.K.; Wu, L.C.: Integrated FAHP, ARAS-F and MSGP methods for green supplier evaluation and selection. Technol. Econ. Dev. Econ. 22, 651–669 (2016). https://doi.org/10.3846/20294913.2015.1072750

    Article  Google Scholar 

  52. Duckstein, L.; Opricovic, S.: Multiobjective optimization in river basin development. Water Resour. Res. 16, 14–20 (1980). https://doi.org/10.1029/WR016I001P00014

    Article  ADS  Google Scholar 

  53. Opricovic, S.; Tzeng, G.H.: Extended VIKOR method in comparison with outranking methods. Eur. J. Oper. Res. 178, 514–529 (2007). https://doi.org/10.1016/J.EJOR.2006.01.020

    Article  Google Scholar 

  54. Zafar, I.; Rashid, K.; Tariq, S.; Ali, A.; Ju, M.: Integrating technical-environmental-economical perspectives for optimizing rubber content in concrete by multi-criteria analysis. Constr. Build. Mater. 14(319), 125820 (2022). https://doi.org/10.1016/j.conbuildmat.2021.125820

    Article  CAS  Google Scholar 

  55. Hajiagha, S.H.R.; Hashemi, S.S.; Mohammadi, Y.; Zavadskas, E.K.: Fuzzy belief structure based VIKOR method: an application for ranking delay causes of Tehran metro system by FMEA criteria. Transport 31, 108–118 (2016). https://doi.org/10.3846/16484142.2016.1133454

    Article  Google Scholar 

  56. Liu, P.; Wu, X.: A competency evaluation method of human resources managers based on multi-granularity linguistic variables and VIKOR method. Technol. Econ. Dev. Econ. 18, 696–710 (2012). https://doi.org/10.3846/20294913.2012.753169

    Article  Google Scholar 

  57. Fu, H.P.; Chu, K.K.; Chao, P.; Lee, H.H.; Liao, Y.C.: Using fuzzy AHP and VIKOR for benchmarking analysis in the hotel industry. Serv. Ind. J. 31, 2373–2389 (2011). https://doi.org/10.1080/02642069.2010.503874

    Article  Google Scholar 

  58. Kavitha, S.; Satheeshkumar, J.; Janani, K.; Amudha, T.; Rakkiyappan, R.: Ensemble feature selection using q-rung orthopair hesitant fuzzy multi criteria decision making extended to VIKOR. J. Exp. Theor. Artif. Intell. (2023). https://doi.org/10.1080/0952813X.2023.2183273

    Article  Google Scholar 

Download references

Acknowledgements

We extend our heartfelt thanks to Dr. Sanchit Anand, Assistant Professor in the Department of Civil Engineering at Manipal University Jaipur, for graciously allowing us to conduct the compressive strength tests using the Universal Testing Machine (UTM) available in the department. His support and facilitation have been instrumental in obtaining crucial data and insights for this research. Additionally, we express our sincere appreciation to the Metallurgy Department for providing access to their UTM for conducting the tensile strength tests. Their willingness to share resources and expertise has greatly enriched the scope and depth of our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Gaur.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sain, A., Gaur, A., Somani, P. et al. Characterization and Evaluation of Bamboo Species for Construction Applications Incorporating TOPSIS, AHP and VIKOR. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08797-x

Keywords

Navigation