Skip to main content
Log in

Ab Initio Study of Lead-Free Double Halide Perovskite X2GeSnCl6 (X = Na, K) Compounds for Energy Conversion System

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this article, the physical properties of Ge-based lead-free halide double perovskite compounds X2GeSnCl6 (X = Na, K) are studied in the framework of density functional theory by using the Wien2k code. Compounds show stability with negative values of ground state energy and formation energy. The band structure in electronic properties exhibits the semiconducting nature with 2.24 eV and 2.21 eV direct band gaps by using a modified Becke Johnson approximation which gives clear results of the band gap. On the other hand, electronic charge density exhibits the covalent band of Cl with Ge and Sn while the ionic bond between Cl and (Na, K). Optical conductivity is high and maximum output in the visible region of the solar energy spectrum along with maximum absorbance for both compounds while reflectivity is lower in the visible region which makes the compounds suitable for solar cell and opto-electronic applications. Using BoltzTraP classical theory in the thermoelectric property valuable results are observed with higher ZT values of K2GeSnCl6 with 0.99 which makes it a good candidate for thermoelectric applications. Both compounds are mechanically and dynamically stable with brittle nature; also covalent bonding nature is confirmed by Cauchy pressure with negative values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  PubMed  CAS  Google Scholar 

  2. Li, X.; Aftab, S.; Abbas, A.; Hussain, S.; Aslam, M.; Kabir, F.; Abd-Rabboh, H.S.M.; Hegazy, H.H.; Xu, F.; Ansari, M.Z.: Advances in mixed 2D and 3D perovskite heterostructure solar cells: a comprehensive review. Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2023.108979

    Article  Google Scholar 

  3. Chen, Y.; Zhou, W.; Chen, X.; Zhang, X.; Gao, H.; Ouedraogo, N.A.N.; Zheng, Z.; Han, C.B.; Zhang, Y.; Yan, H.: In situ management of ions migration to control hysteresis effect for planar heterojunction perovskite solar cells. Adv. Funct. Mater. 32, 2108417 (2022). https://doi.org/10.1002/adfm.202108417

    Article  CAS  Google Scholar 

  4. Slavney, A.H.; Te, Hu.; Lindenberg, A.M.; Karunadasa, H.I.: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016). https://doi.org/10.1021/jacs.5b13294

    Article  PubMed  CAS  Google Scholar 

  5. McClure, E.T.; Ball, M.R.; Windl, W.; Woodward, P.M.: Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28, 1348–1354 (2016). https://doi.org/10.1021/acs.chemmater.5b04231

    Article  CAS  Google Scholar 

  6. Wang, Z.; Fu, W.; Hu, L.; Zhao, M.; Guo, T.; Hrynsphan, D.; Tatsiana, S.; Chen, J.: Improvement of electron transfer efficiency during denitrification process by Fe–Pd/multi-walled carbon nanotubes: possessed redox characteristics and secreted endogenous electron mediator. Sci. Total Environ. 781, 146686 (2021). https://doi.org/10.1016/j.scitotenv.2021.146686

    Article  ADS  CAS  Google Scholar 

  7. Volonakis, G.; Haghighirad, A.A.; Milot, R.L.; Sio, W.H.; Filip, M.R.; Wenger, B.; Johnston, M.B.; Herz, L.M.; Snaith, H.J.; Giustino, F.: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap. J. Phys. Chem. Lett. 8, 772–778 (2017). https://doi.org/10.1021/acs.jpclett.6b02682

    Article  PubMed  CAS  Google Scholar 

  8. Taran, T.T.; Panella, J.R.; Chamorro, J.R.; Morey, J.R.; McQueen, T.M.: Designing indirect–direct bandgap transitions in double perovskites. Mater. Horizons 4(4), 688–693 (2017). https://doi.org/10.1039/C7MH00239D

  9. Chiara, R.; Morana, M.; Malavasi, L.: Germanium-based halide perovskites: materials, properties, and applications. ChemPlusChem 86, 879–888 (2021). https://doi.org/10.1002/cplu.202100191

    Article  PubMed  CAS  Google Scholar 

  10. Landini, E.; Reuter, K.; Oberhofer, H.: Machine-Learning Based Screening of Lead-Free Halide Double Perovskites for Photovoltaic Applications. arXiv preprint arXiv:2208.12736 (2022). https://doi.org/10.48550/arXiv.2208.12736

  11. Feng, X.; Sun, L.; Wang, W.; Zhao, Y.; Shi, J.-W.: Construction of CdS@ZnO core–shell nanorod arrays by atomic layer deposition for efficient photoelectrochemical H2 evolution. Sep. Purif. Technol. 324, 124520 (2023). https://doi.org/10.1016/j.seppur.2023.124520

    Article  CAS  Google Scholar 

  12. Sk, M.; Ghosh, S.: 16.35% efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik 267, 169–608 (2022). https://doi.org/10.1016/j.ijleo.2022.169608

    Article  CAS  Google Scholar 

  13. Behera, D.; Mukherjee, S.K.: First-principles calculations to investigate structural, optoelectronics and thermoelectric properties of lead free Cs2GeSnX6 (X = Cl, Br). Mater. Sci. Eng. B 292, 116421 (2023). https://doi.org/10.1016/j.mseb.2023.116421

    Article  CAS  Google Scholar 

  14. Ali, M.A.; Alothman, A.A.; Mushab, M.; Khan, A.; Faizan, M.: DFT insight into structural, electronic, optical and thermoelectric properties of eco-friendly double perovskites Rb2GeSnX6 (X = Cl, Br) for green energy generation. J. Inorgan. Organomet. Polym. Mater. 33, 3402–3412 (2023). https://doi.org/10.1007/s10904-023-02777-8

    Article  CAS  Google Scholar 

  15. Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.-S.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  CAS  Google Scholar 

  16. Lu, C.; Ren, R.; Zhu, Z.; Pan, G.; Wang, G.; Xu, C.; Qiao, J., et al.: BaCo0.4Fe0.4Nb0.1Sc0.1O3-δ perovskite oxide with super hydration capacity for a high-activity proton ceramic electrolytic cell oxygen electrode. Chem. Eng. J. 472, 144–878 (2023). https://doi.org/10.1016/j.cej.2023.144878

    Article  CAS  Google Scholar 

  17. Blaha, P.; Schwarz, K.; Sorantin, P.; Trickey, S.B.: Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990). https://doi.org/10.1016/0010-4655(90)90187-6

    Article  ADS  CAS  Google Scholar 

  18. Tran, F.; Blaha, P.: Phys. Rev. Lett. 102, 22640 (2009)

    Google Scholar 

  19. Nazir, G.; Rehman, A.; Hussain, S.; Algrafy, E.; Mahmood, Q.; Mera, A.; Hegazy, H.H.; Alharthi, S.; Amin, M.A.: Study of narrow band gap double perovskites (Sr/Ba)2BB’O6 (B = In, Tl, B’ = Sb, Bi) for optical, thermoelectric, and mechanical properties. Mater. Today Commun. 31, 103–547 (2022). https://doi.org/10.1016/j.mtcomm.2022.103547

    Article  CAS  Google Scholar 

  20. Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.-M.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  PubMed  CAS  Google Scholar 

  21. Shah, M.Q.; Murtaza, G.; Shafiq, M.; Sharif, S.; Morley, N.A.: Investigation of optoelectronic & thermoelectric features of ZnCrX2 (X = S Se Te) chalcopyrite semiconductor using mBJ potential. Chin. J. Phys. (2023). https://doi.org/10.1016/j.cjph.2023.05.016

    Article  Google Scholar 

  22. Becke, A.D.; Roussel, M.R.: Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39(8), 3761 (1989). https://doi.org/10.1103/PhysRevA.39.3761

    Article  ADS  CAS  Google Scholar 

  23. Irfan, M.; Murtaza, G.; Muhammad, N.; Tahir, S.; Raza, H.H.; Sabir, B.; Iftikhar, M.; Sharif, S.: Experimental and theoretical studies of structural, electronic and magnetic properties of RE2NiCrO6 (RE = Ce, Pr and Nd) double perovskites. Phys. E Low-Dimens. Syst. Nanostruct. 148, 115635 (2023). https://doi.org/10.1016/j.physe.2022.115635

    Article  CAS  Google Scholar 

  24. Abdullah, D.; Gupta, D.C.: Structural, mechanical and dynamical stabilities of K2NaMCl6 (M: Cr, Fe) halide perovskites along with electronic and thermal properties. J. Magn. Magn. Mater. 569, 170474 (2023). https://doi.org/10.1016/j.jmmm.2023.170474

    Article  CAS  Google Scholar 

  25. Behera, D.; Mukherjee, S.K.: Theoretical investigation of the lead-free K2InBiX6 (X = Cl, Br) double perovskite compounds using ab initio calculation. JETP Lett. 116, 537–546 (2022). https://doi.org/10.1134/S0021364022601944

    Article  ADS  CAS  Google Scholar 

  26. Huang, Q.; Jiang, S.; Wang, Y.; Jiang, J.; Chen, Y.; Xu, J.; Qiu, H.; Su, C.; Chen, D.: Highly active and durable triple conducting composite air electrode for low-temperature protonic ceramic fuel cells. Nano Res. (2023). https://doi.org/10.1007/s12274-023-5531-3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Essaoud, S.S.; Bouhemadou, A.; Ketfi, M.E.; Allali, D.; Bin-Omran, S.: Structural parameters, electronic structure and linear optical functions of LuXCo2Sb2 (X = V, Nb and Ta) double half Heusler alloys. Phys. B Condens. Matter 657, 414809 (2023). https://doi.org/10.1016/j.physb.2023.414809

    Article  CAS  Google Scholar 

  28. Maphoto, R.I.; Morukuladi, M.T.; Malatji, K.T.; Masedi, M.C.; Ngoepe, P.E.: First-principle study of CsPbBr3 and CsPbI3 perovskite solar cells. ECS J. Solid State Sci. Technol. 11, 035012 (2022). https://doi.org/10.1149/2162-8777/ac5eb6

    Article  ADS  CAS  Google Scholar 

  29. Togo, A.; Oba, F.; Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008). https://doi.org/10.1103/PhysRevB.78.134106

    Article  ADS  CAS  Google Scholar 

  30. Absike, H.; Baaalla, N.; Lamouri, R.; Labrim, H.; Ez-zahraouy, H.: Optoelectronic and photovoltaic properties of Cs2AgBiX6 (X = Br, Cl, or I) halide double perovskite for solar cells: Insight from density functional theory. Int. J. Energy Res. 46, 11053–11064 (2022). https://doi.org/10.1002/er.7907

    Article  CAS  Google Scholar 

  31. Alnujaim, S.; Bouhemadou, A.; Chegaar, M.; Guechi, A.; Bin-Omran, S.; Khenata, R.; Al-Douri, Y.; Yang, W.; Lu, H.: Density functional theory screening of some fundamental physical properties of Cs2InSbCl6 and Cs2InBiCl6 double perovskites. Eur. Phys. J. B 95, 114 (2022). https://doi.org/10.1140/epjb/s10051-022-00381-2

    Article  ADS  CAS  Google Scholar 

  32. Dar, S.A.; Want, B.: DFT study of structural, mechanical, and opto-electronic properties of scadium-based halide double perovskite Cs2ScInBr6 for optoelectronic applications. Micro Nanostruct. 170, 207370 (2022). https://doi.org/10.1016/j.micrna.2022.207370

    Article  CAS  Google Scholar 

  33. Hayat, M.S.; Khalil, R.M.A.: A DFT engineering of double halide type perovskites Cs2SiCl6, Cs2GeCl6, Cs2SnCl6 for optoelectronic applications. Solid State Commun. 361, 115064 (2023). https://doi.org/10.1016/j.ssc.2023.115064

    Article  CAS  Google Scholar 

  34. Iqbal, M.W.; Manzoor, M.; Gouadria, S.; Asghar, M.; Zainab, M.; Ahamd, N.N.; Aftab, S.; Sharma, R.; Zahid, T.: DFT insights on the opto-electronic and thermoelectric properties of double perovskites K2AgSbX6 (X = Cl, Br) via halides substitutions for solar cell applications. Mater. Sci. Eng. B 290, 116338 (2023). https://doi.org/10.1016/j.mseb.2023.116338

    Article  CAS  Google Scholar 

  35. Manzoor, M.; Bahera, D.; Sharma, R.; Tufail, F.; Iqbal, M.W.; Mukherjee, S.K.: Investigated the structural, optoelectronic, mechanical, and thermoelectric properties of Sr2BTaO6 (B = Sb, Bi) for solar cell applications. Int. J. Energy Res. 46, 23698–23714 (2022). https://doi.org/10.1002/er.8669

    Article  CAS  Google Scholar 

  36. Anbarasan, R.; Srinivasan, M.; Suriakarthick, R.; Albalawi, H.; Sundar, J.K.; Ramasamy, P.; Mahmood, Q.: Exploring the structural, mechanical, electronic, and optical properties of double perovskites of Cs2AgInX6 (X = Cl, Br, I) by first-principles calculations. J. Solid State Chem. 310, 123025 (2022). https://doi.org/10.1016/j.jssc.2022.123025

    Article  CAS  Google Scholar 

  37. Roknuzzaman, Md.; Zhang, C.; Ostrikov, K.; Aijun, Du.; Wang, H.; Wang, L.; Tesfamichael, T.: Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Sci. Rep. 9, 718 (2019). https://doi.org/10.1038/s41598-018-37132-2

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  38. Berdiyorov, G.R.: Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. Aip Adv. (2016). https://doi.org/10.1063/1.4948799

    Article  Google Scholar 

  39. Fu, S.; Wu, H.; He, W.; Li, Q.; Shan, C.; Wang, J.; Du, Y.; Du, S.; Huang, Z.; Hu, C.: Conversion of dielectric surface effect into volume effect for high output energy. Adv. Mater. (2023). https://doi.org/10.1002/adma.202302954

    Article  PubMed  Google Scholar 

  40. Berri, S.; Bouarissa, N.: Probable thermoelectric materials for promising candidate of optoelectronics for Ba-based complex perovskite compounds. Int. J. Energy Res. 46, 9968–9984 (2022). https://doi.org/10.1002/er.7232

    Article  CAS  Google Scholar 

  41. Hu, D.-Y.; Zhao, X.-H.; Tang, T.-Y.; Li, Li.; Tang, Y.-L.: Insights on structural, elastic, electronic and optical properties of double-perovskite halides Rb2CuBiX6 (X = Br, Cl). J. Phys. Chem. Solids 167, 110791 (2022). https://doi.org/10.1016/j.jpcs.2022.110791

    Article  CAS  Google Scholar 

  42. Dar, S.A.; Sharma, R.; Srivastava, V.; Sakalle, U.K.: Investigation on the electronic structure, optical, elastic, mechanical, thermodynamic and thermoelectric properties of wide band gap semiconductor double perovskite Ba2InTaO6. RSC Adv. 9, 9522–9532 (2019). https://doi.org/10.1039/C9RA00313D

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lu, Y.; Stegmaier, M.; Nukala, P.; Giambra, M.A.; Ferrari, S.; Busacca, A.; Pernice, W.H.P.; Agarwal, R.: Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17, 150–155 (2017). https://doi.org/10.1021/acs.nanolett.6b03688

    Article  ADS  PubMed  CAS  Google Scholar 

  44. Ghrib, T.; Rached, A.; Algrafy, E.; Al-nauim, I.A.; Albalawi, H.; Ashiq, M.G.B.; UlHaq, B.; Mahmood, Q.J.M.C.: A new lead free double perovskites K2Ti(Cl/Br)6; a promising materials for optoelectronic and transport properties; probed by DFT. Mater. Chem. Phys. 264, 124435 (2021). https://doi.org/10.1016/j.matchemphys.2021.124435

    Article  CAS  Google Scholar 

  45. Mahdjoubi, R.; Megdoud, Y.; Tairi, L.; Meradji, H.; Chouahda, Z.; Ghemid, S.; El Haj Hassan, F.: Structural, electronic, optical and thermal properties of CuXTe2 (X = Al, Ga, In) compounds: an ab-initio study. Int. J. Mod. Phys. B 33(7), 1950045 (2019). https://doi.org/10.1142/S0217979219500450

    Article  ADS  CAS  Google Scholar 

  46. Menakh, S.; Daoudi, B.; Boukraa, A.; Ferkous, K.: First-principles calculations to investigate structural, elastic, electronic and optical properties of A2OsH6 for storage hydrogen and optoelectronic devices. Comput. Condens. Matter 31, e00684 (2022). https://doi.org/10.1016/j.cocom.2022.e00684

    Article  Google Scholar 

  47. Kumar, M.; Umezawa, N.; Imai, M.: (Sr, Ba)(Si, Ge)2 for thin-film solar-cell applications: first-principles study. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4880662

    Article  Google Scholar 

  48. Dong, C.; Guan, X.; Wang, Z.; Zhao, H.; Kuai, Y.; Gao, S.; Chen, C.; Zou, WeiXia; Pengfei, Lu.: The effects of cation and halide anion on the stability, electronic and optical properties of double perovskite Cs2NaMX6 (M = In, Tl, Sb, bi; X = Cl, Br, I). Comput. Mater. Sci. 220, 112058 (2023). https://doi.org/10.1016/j.commatsci.2023.112058

    Article  CAS  Google Scholar 

  49. Debbarma, M.; Ghosh, D.; Chanda, S.; Debnath, B.; Chattopadhyaya, S.: Tuning of optoelectronic and transport properties of zinc-blend magnesium chalcogenides through doping of Hg atom(s): the mBJ-GGA+ U based first-principle calculations. Comput. Condens. Matter 30, e00650 (2022). https://doi.org/10.1016/j.cocom.2022.e00650

    Article  Google Scholar 

  50. Barhoumi, M.; Bouzidi, S.; Sfina, N.; Bouelnor, G.A.A.: First-principles calculations to investigate electronic and optical properties of Ti4GaPbX2 (X = C or N) two-dimensional materials. Chem. Phys. 564, 111728 (2023). https://doi.org/10.1016/j.chemphys.2022.111728

    Article  CAS  Google Scholar 

  51. Varadwaj, P.R.; Marques, H.M.: The Cs2AgRhCl6 halide double perovskite: a dynamically stable lead-free transition-metal driven semiconducting material for optoelectronics. Front. Chem. 8, 796 (2020). https://doi.org/10.3389/fchem.2020.00796

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  52. Allouche, A.; Siad, A.B.; Siad, M.B.; Merabiha, O.; Baira, M.; Khenata, R.: New investigated lead free double perovskite materials Rb2LiBiX6 (X = Cl, F, Br, I) for optoelectronics and solar cell applications via first principle calculations. Solid State Commun. 366, 115162 (2023). https://doi.org/10.1016/j.ssc.2023.115162

    Article  CAS  Google Scholar 

  53. Alreyahi, A.Y.; AlAzar, S.; Mousa, A.A.; Essaoud, S.S.; Berarma, K.; Maghrabi, M.; Al-Aqtash, N.; Mufleh, A.: The Electronic, Optical, Thermoelectric, and Structural Properties of a Cubic Double Perovskite X2AgBiBr6 (X = Li, Na, K, Rb, Cs): Ab-Initio Calculation

  54. Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P., III.: Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi (b) 252, 1700–1710 (2015). https://doi.org/10.1002/pssb.201552007

    Article  ADS  CAS  Google Scholar 

  55. Shen, Y.; Xie, J.; He, T.; Yao, L.; Xiao, Y.: CEEMD-fuzzy control energy management of hybrid energy storage systems in electric vehicles. IEEE Trans. Energy Convers. (2023). https://doi.org/10.1109/TEC.2023.3306804

    Article  Google Scholar 

  56. DiSalvo, F.J.: Thermoelectric cooling and power generation. Science 285, 703–706 (1999). https://doi.org/10.1126/science.285.5428.703

    Article  PubMed  CAS  Google Scholar 

  57. Scheidemantel, T.J.; Ambrosch-Draxl, C.; Thonhauser, T.; Badding, J.V.; Sofo, J.O.: Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003). https://doi.org/10.1103/PhysRevB.68.125210

    Article  ADS  CAS  Google Scholar 

  58. Mir, S.A.; Gupta, D.C.: Understanding the origin of semiconducting ferromagnetic character along with the high figure of merit in Cs2NaMCl6 (M = Cr, Fe) double perovskites. J. Magn. Magn. Mater. 519, 167431 (2021). https://doi.org/10.1016/j.jmmm.2020.167431

    Article  CAS  Google Scholar 

  59. Al-Qaisi, S.; Ali, M.A.; Alrebdi, T.A.; Vu, T.V.; Morsi, M.; UlHaq, B.; Ahmed, R.; Mahmood, Q.; Tahir, S.A.: First-principles investigations of Ba2NaIO6 double perovskite semiconductor: material for low-cost energy technologies. Mater. Chem. Phys. 275, 125237 (2022). https://doi.org/10.1016/j.matchemphys.2021.125237

    Article  CAS  Google Scholar 

  60. Zhao, C.; Cheung, C.F.; Xu, P.: High-efficiency sub-microscale uncertainty measurement method using pattern recognition. ISA Trans. 101, 503–514 (2020). https://doi.org/10.1016/j.isatra.2020.01.038

    Article  PubMed  Google Scholar 

  61. Zanib, M.; Iqbal, M.W.; Manzoor, M.; Asghar, M.; Sharma, R.; Ahmad, N.N.; Wabaidur, S.M., et al.: A DFT investigation of mechanical, optical and thermoelectric properties of double perovskites K2AgAsX6 (X = Cl, Br) halides. Mater. Sci. Eng. B 295, 116604 (2023). https://doi.org/10.1016/j.mseb.2023.116604

    Article  CAS  Google Scholar 

  62. Ayyaz, A.; Murtaza, G.; Umer, M.; Usman, A.; Raza, H.H.: Structural, elastic, optoelectronic, and transport properties of Na-based halide double perovskites Na2CuMX6 (M = Sb, Bi, and X = Cl, Br) as renewable energy materials: A DFT insight. J. Mater. Res. 38, 4609–4624 (2023). https://doi.org/10.1557/s43578-023-01181-9

    Article  ADS  CAS  Google Scholar 

  63. Ayyaz, A.; Murtaza, G.; Usman, A.; Umer, M.; Shah, M.Q.; Ali, H.S.: First principles insight on mechanical stability, optical and thermoelectric response of novel lead-free Rb2ScCuBr6 and Cs2ScCuBr6 double perovskites. Mater. Sci. Semicond. Process. 169, 107–910 (2024). https://doi.org/10.1016/j.mssp.2023.107910

    Article  CAS  Google Scholar 

  64. Mouhat, F.; Coudert, F.-X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104 (2014). https://doi.org/10.1103/PhysRevB.90.224104

    Article  ADS  CAS  Google Scholar 

  65. Waller, I.: Dynamical theory of crystal lattices by M. Born and K. Huang. Acta Crystallogr. A 9, 837–838 (1956). https://doi.org/10.1107/S0365110X56002370

    Article  Google Scholar 

  66. Bougherara, K.; Al-Qaisi, S.; Laref, A.; Vu, T.V.; Rai, D.P.: Ab initio insight of the electronic, structural, mechanical and optical properties of X3P2 (X = Mg, Ca) from GGA and hybrid functional (HSE06). J. Supercond. Nov. Magn. 35(1), 79–86 (2022). https://doi.org/10.1007/s10948-021-06009-3

    Article  CAS  Google Scholar 

  67. Ali, M.A.; Hossain, M.A.; Rayhan, M.A.; Hossain, M.M.; Uddin, M.M.; Roknuzzaman, Md.; Ostrikov, K.; Islam, A.K.M.A.; Naqib, S.H.: First-principles study of elastic, electronic, optical and thermoelectric properties of newly synthesized K2Cu2GeS4 chalcogenide. J. Alloys Compd. 781, 37–46 (2019). https://doi.org/10.1016/j.jallcom.2018.12.035

    Article  CAS  Google Scholar 

  68. Van Mourik, T.; Gdanitz, R.J.: A critical note on density functional theory studies on rare-gas dimers. J. Chem. Phys. 116, 9620–9623 (2002). https://doi.org/10.1063/1.1476010

    Article  ADS  CAS  Google Scholar 

  69. Haas, P.; Tran, F.; Blaha, P.: Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79(8), 085104 (2009). https://doi.org/10.1103/PhysRevB.79.085104

    Article  ADS  CAS  Google Scholar 

  70. Wooten, F.: Optical Properties of Solids. Academic Press, London (1972)

    Google Scholar 

  71. Pugh, S.F.: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 45, 823–843 (1954). https://doi.org/10.1080/14786440808520496

    Article  CAS  Google Scholar 

  72. Zhang, J.-M.; Zhang, Y.; Ke-Wei, Xu.; Ji, V.: Young’s modulus surface and Poisson’s ratio curve for cubic metals. J. Phys. Chem. Solids 68, 503–510 (2007). https://doi.org/10.1016/j.jpcs.2007.01.025

    Article  ADS  CAS  Google Scholar 

  73. Anderson, O.L.: A simplified method for calculating the Debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963). https://doi.org/10.1016/0022-3697(63)90067-2

    Article  ADS  CAS  Google Scholar 

  74. Schreiber, E., Anderson, O.L.; Soga, N.; Bell, J.F.: Elastic Constants and Their Measurement, pp. 747–748 (1975). https://doi.org/10.1115/1.3423687

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MS has given a basic idea and contributed in basic calculation and write-ups, MQS has written optical properties, GM has supervised and provided the software facilities, AA has calculated electronic and optical properties, AU has written electronic properties and calculated electronic charge distribution, MU has calculated and written elastic properties.

Corresponding authors

Correspondence to Muhammad Qasim Shah or G. Murtaza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiq, M., Shah, M.Q., Murtaza, G. et al. Ab Initio Study of Lead-Free Double Halide Perovskite X2GeSnCl6 (X = Na, K) Compounds for Energy Conversion System. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08751-x

Keywords

Navigation