Skip to main content
Log in

Chemical and Microstructural Changes in Reclaimed Asphalt Pavement Aggregates by Pyrolysis

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The utilization of reclaimed asphalt pavement (RAP) aggregates as an alternative for rigid pavements is limited. The main objective of this study is to explore and improve the utilization of RAP aggregates as an alternative material for rigid pavement. Specifically, this study focuses on addressing a significant challenge associated with RAP aggregates, which is their poor bond with cementitious binders. The poor bonding results in low compressive and tensile strengths of concrete or mortar. The poor bonding is mainly due to the presence of a thin oily layer of asphalt residue. A proposed method was carried out to reduce the negative impact on the bond between the aggregate and mortar by exposing the RAP aggregates to the pyrolysis process. The research focused on the analyses of the physical and chemical behavior of the aggregates, using the SEM, EDX, and FTIR approaches, as well as reviewing the mortar in both compressive and flexural tensile strength. The pyrolysis affected the physical and mechanical properties positively and the chemical composition of the RAP showed significant changes. The chemical constituents of asphalt attached to RAP aggregates are hydrocarbons. The thin layer of RAP asphalt is the cause of weak bonding, but this layer was altered by the pyrolysis procedure. As a result, water absorption decreased, which had a positive impact on the hydraulic synergy of cement. It is shown that the pyrolyzing RAP improves the compressive strength and flexural tensile strength through modification of the asphalt residue covering the aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author upon reasonable request.

Abbreviations

\(f_{{\text{c}}}^{{\prime }}\) :

Compressive strength of mortar (MPa)

f t :

Flexural strength of mortar (MPa)

P :

Load (N)

A :

Cross-sectional area (mm2)

M :

Bending moment (Nmm)

y :

Half height of beam (mm)

Ix :

Beam inertia (mm4)

RAP:

Reclaimed asphalt pavement

PYRO:

Pyrolysis aggregate

FTIR:

Fourier transform infra-red

EDX:

Energy-dispersive X-ray

SEM:

Scanning electron microscope

ASTM:

American standard testing material

SNI:

Standard Nasional Indonesia

MPa:

Mega pascal

C:

Carbon

Ca:

Calcium

C–H:

Hydrocarbon

O–H:

Hydroxide

C–S:

Carbon sulfide

C–O:

Carbon monoxide

S:

Sulfur

S–S:

Disulfide

Si:

Silica

Fe:

Ferrit

References

  1. Sunarjono, S.; Hidayati, N.: Mixture design consideration for foamed asphalt using RAP materials. IOP Conf. Ser. Mater. Sci. Eng. 403, 012027 (2018). https://doi.org/10.1088/1757-899X/403/1/012027

    Article  Google Scholar 

  2. Andrei, D.; Kitch, W.; Ellingsen, E.; Grosz, L.; Longoria, S.; Stoica, D.: Review of High Percentage RAP Usage in Asphalt Concrete, p. 112 (2013). https://www.researchgate.net/publication/271601966_Review_of_High_Percentage_RAP_Usage_in_Asphalt_Concrete

  3. Al-Qadi, I.L.; Elseifi, M.; Carpenter, S.H.: Reclaimed Asphalt Pavement—A Literature Review (2014). Civil Engineering Studies Illinois Center for Transportation Series No. 07-001 UILU-ENG-2007-2014

  4. Abdelhak, B.; Abdelmadjid, H.C.; Mohamed, G.; Hamza, G.: Effect of recycled asphalt aggregates on the rutting of bituminous concrete in the presence of additive. Arab. J. Sci. Eng. 41(10), 4139–4145 (2016). https://doi.org/10.1007/s13369-016-2125-3

    Article  Google Scholar 

  5. Al Mamun, A.; Al-Abdul Wahhab, H.I.; Dalhat, M.A.: Comparative evaluation of waste cooking oil and waste engine oil rejuvenated asphalt concrete mixtures. Arab. J. Sci. Eng. 45(10), 7987–7997 (2020). https://doi.org/10.1007/s13369-020-04523-5

    Article  Google Scholar 

  6. Widayanti, A.; Soemitro Ria, A.A.; Ekaputri, J.J.; Suprayitno, H.: Characterization of Reclaimed Asphalt Pavement (RAP) as a Road Pavement Material (National Road Waru, Sidoarjo), MATEC Web Conference, vol. 181 (2018). https://doi.org/10.1051/matecconf/201818105001

  7. Gao, J.; Yang, J.; Yu, D.; Jiang, Y.; Ruan, K.; Tao, W.; Sun, C.; Luo, L.: Reducing the variability of multi-source reclaimed asphalt pavement materials: a practice in China. Constr. Build. Mater. 278, 66 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122389

    Article  Google Scholar 

  8. Copeland, A.: Reclaimed Asphalt Pavement in Asphalt Mixtures: State of the Practice (2011)

  9. Pokorný, J.; Šál, J.; Ševčík, R.: Properties of reclaimed asphalt pavement enriched concrete. AIP Conf. Proc. 2322, 5–10 (2021). https://doi.org/10.1063/5.0042501

    Article  Google Scholar 

  10. Oliveira, J.R.M.; Silva, H.M.R.D.; Jesus, C.M.G.; Abreu, L.P.F.; Fernandes, S.R.M.: Pushing the asphalt recycling technology to the limit. Int. J. Pavem. Res. Technol. 6(2), 109–116 (2013). https://doi.org/10.6135/ijprt.org.tw/2013.6(2).109

    Article  Google Scholar 

  11. Thanya, I.N.A.; Suweda, I.W.; Putra, G.K.: Performance of asphalt concrete wearing course (AC-WC) utilizing reclaimed asphalt pavement from cold milling bound with 80/100 pen asphalt. IOP Conf. Ser. Mater. Sci. Eng. 316(1), 66 (2018). https://doi.org/10.1088/1757-899X/316/1/012037

    Article  Google Scholar 

  12. Nataadmadja, A.D.; Prahara, E.; Sumbung, P.C.: Analysis of the usage of rubberized asphalt in hot mix asphalt using Reclaimed Asphalt Pavement (RAP). IOP Conf. Ser. Earth Environ. Sci. (2018). https://doi.org/10.1088/1755-1315/109/1/012036

    Article  Google Scholar 

  13. Abraham, S.M.; Ransinchung, G.D.R.N.: Influence of RAP aggregates on strength, durability and porosity of cement mortar. Constr. Build. Mater. 189, 1105–1112 (2018). https://doi.org/10.1016/j.conbuildmat.2018.09.069

    Article  Google Scholar 

  14. Hoy, M.; Horpibulsuk, S.; Arulrajah, A.: Strength development of Recycled Asphalt Pavement—fly ash geopolymer as a road construction material. Constr. Build. Mater. 117, 209–219 (2016). https://doi.org/10.1016/j.conbuildmat.2016.04.136

    Article  Google Scholar 

  15. Budianto: Menuju Jalan yang Andal. In: PT. Cakra Daya Sakti, Surabaya (2009)

  16. Dinis-Almeida, M.; Castro-Gomes, J.; Sangiorgi, C.; Zoorob, S.E.; Afonso, M.L.: Performance of warm mix recycled asphalt containing up to 100% RAP. Constr. Build. Mater. 112, 1–6 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.108

    Article  Google Scholar 

  17. Lu, M.; Saleh, D.X.: Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives. J. Constr. Build. Mater. 114, 580–587 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.200

    Article  Google Scholar 

  18. Pradyumna, P.; Mittal, T.; Abhishek, J.: Characterization of reclaimed asphalt pavement (RAP) for use in bituminous road construction. Procedia Soc. Behav. Sci. 66, 1149–1157 (2013)

    Article  Google Scholar 

  19. Widger, A.; Skilnick, F.; Zabolotnii, E.: Utilization of recycled asphalt in cold mixes and cold in–place recycling processes-guidelines. In: Engineering-Training Clifton Associated Ltd. Communities of Tomorrow, Leveraged Municipal Innovation Fund (2012)

  20. Setiadji, B.H., et al.: Pyrolysis of reclaimed asphalt aggregates in mortar. Int. J. Technol. 13(4), 751–763 (2022). https://doi.org/10.14716/ijtech.v13i4.5621

    Article  Google Scholar 

  21. Joice, E.: Perilaku Material Daur Ulang Lapis Pondasi Perkerasan Jalan Yang Distabilisasi Dengan Semen Dan Pozolan Alam. In: Disertation Report University of Diponegoro (2015)

  22. Mary, J.; Sepuri, H.K.; Thejas, H.K.: A review on recycled asphalt pavement in cement concrete. Int. J. Latest Eng. Res. Appl. 3, 9–18 (2019)

    Google Scholar 

  23. Abraham, S.M.; Ransinchung, G.D.: Laboratory research on reclaimed asphalt pavement-inclusive cementitious mixtures. ACI Mater. J. 117(2), 193–204 (2020). https://doi.org/10.14359/51722398

    Article  Google Scholar 

  24. Ransinchung, G.D.; Singh, S.; Abraham, S.M.: Feasibility of reclaimed asphalt pavement in rigid pavement construction. In: Eng. Challenges Sustain. Futur.—Proceedings of the 3rd International. Conference Civil, offshore Environment Engineering (ICCOEE 2016), pp. 401–404 (2016). https://doi.org/10.1201/b21942-81

  25. Abraham, S.M.; Ransinchung, G.D.R.N.: Pore structure characteristics of RAP-inclusive cement mortar and cement concrete using mercury intrusion porosimetry technique. Adv. Civ. Eng. Mater. 8(3), 1–24 (2019). https://doi.org/10.1520/acem20180161

    Article  Google Scholar 

  26. Qiang, W.; Peiyu, Y.; Ruhan, A.; Jinbo, Y.; Xiangming, K.: Strength mechanism of cement-asphalt mortar. J. Mater. Civ. Eng. 23(9), 1353–1359 (2011). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000301

    Article  Google Scholar 

  27. Riyanto, T.; Putri, F.M.Y.; Widayat, W.: Heat integration analysis of preliminary plant design of glycerol conversion into propylene glycol. Int. J. Eng. Appl. 7(6), 204 (2019). https://doi.org/10.15866/irea.v7i6.17879

    Article  Google Scholar 

  28. Basu, P.: Biomass Gasification and Pyrolysis Practical Design and Theory. Elsevier, UK (2010)

    Google Scholar 

  29. Sam, K.D.; Wampler, T.P.: Analytical Pyrolysis Handbook. CRC Press/Taylor & Francis Group, London (2021)

    Book  Google Scholar 

  30. Musta, R.; Ibrahim, M.S.; Nurliana, L.: Identifikasi Senyawa Penyusun Produk Cair Hasil Pirolisis Aspal Alam dari Lawele Kabupaten Buton. Hydrog. Jurnal Kependidikan Kimia 9(1), 1–7. https://doi.org/10.33394/hjkk.v9i1.3568

  31. Khan, M.Z.H.; Sultana, M.; Hasan, M.R.: Pyrolytic waste plastic oil and its diesel blend: fuel characterization. J. Environ. Public Health (2016). https://doi.org/10.1155/2016/7869080

    Article  Google Scholar 

  32. Sihombing, A.V.R.; Subagio, B.S.; Hariyadi, E.S.; Yamin, A.: Development of resilient modulus model proposed for bio-asphalt as modifier in asphalt concrete containing reclaimed asphalt pavement. Int. J. Geomate 19(71), 130–136 (2020). https://doi.org/10.21660/2020.71.68349

    Article  Google Scholar 

  33. Al-Sabaeei, A.M.; Alhussian, H.; Abdulkadir, S.J.; Giustozzi, F.; Napiah, M.; Jagadeesh, A.; Sutanto, M.; Memon, A.M.: Utilization of response surface methodology and machine learning for predicting and optimizing mixing and compaction temperatures of bio-modified asphalt. Case Stud. Constr. Mater. 18, e02073 (2023). https://doi.org/10.1016/j.cscm.2023.e02073

    Article  Google Scholar 

  34. Wang, H.; Ma, Z.; Chen, X.; Mohd Hasan, M.R.: Preparation process of bio-oil and bio-asphalt, their performance, and the application of bio-asphalt: a comprehensive review. J. Traffic Transp. Eng. 7(2), 137–151 (2020). https://doi.org/10.1016/j.jtte.2020.03.002

    Article  Google Scholar 

  35. Kulkarni, P.: Reclaimation of Reclaimed Asphalt Pavement (RAP) by Pyrolysis. A Thesis Environmental Engineering, University Of Cincinnati, India (2003)

  36. Istoto, E.H.; Widayat; Saptadi, S.: Production of fuels from HDPE and LDPE plastic waste via pyrolysis methods. In: ICENIS 2019, vol. 11, pp. 9–12. https://doi.org/10.1051/e3sconf/201912514011

  37. Mohammadafzali, M.; Ali, H.; Sholar, G.A.; Rilko, W.A.; Baqersad, M.: Effects of rejuvenation and aging on binder homogeneity of recycled asphalt mixtures. J. Transp. Eng. Part B Pavem. 145(1), 1–9 (2019). https://doi.org/10.1061/JPEODX.0000089

    Article  Google Scholar 

  38. Dinh, B.H.; Park, D.W.; Le, T.H.M.: Effect of rejuvenators on the crack healing performance of recycled asphalt pavement by induction heating. Constr. Build. Mater. 164, 246–254 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.193

    Article  Google Scholar 

  39. Sihombing, A.V.R.; Subagio, B.S.; Hariyadi, E.S.; Yamin, A.: Mechanical properties of bio-asphalt on recycled asphalt pavement binder BT. In: Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9, pp. 529–538 (2020)

  40. Elkashef, M.; Williams, R.C.; Cochran, E.W.: Physical and chemical characterization of rejuvenated reclaimed asphalt pavement (RAP) binders using rheology testing and pyrolysis gas chromatography-mass spectrometry. Mater. Struct. Constr. 51(1), 2018 (2018). https://doi.org/10.1617/s11527-018-1141-z

    Article  Google Scholar 

  41. Zhang, X.; Zhu, J.; Wu, C.; Wu, Q.; Liu, K.; Jiang, K.: Preparation and properties of wood tar-based rejuvenated asphalt. Materials (2020). https://doi.org/10.3390/ma13051123

    Article  Google Scholar 

  42. Susianto, S.; Anindita, Y.D.; Altway, A.; Afuza, A.; Wena, E.N.; Altway, A.: Proses Katalitik Pirolisis Untuk Cracking Bitumen Dari Asbuton dengan Katalis Zeolit Alam. In: The 2nd Conference on Innovation and Industrial Applications (CINIA 2016), 2016, no. 1, pp. 259–264. https://doi.org/10.12962/j23546026.y2018i1.3426

  43. Liu, P.; Zhu, M.; Zhang, Z.; Wan, W.; Yani, S.; Zhang, D.: Thermogravimetric studies of characteristics and kinetics of pyrolysis of buton oil sand. Energy Procedia 61, 2741–2744 (2014). https://doi.org/10.1016/j.egypro.2014.12.294

    Article  Google Scholar 

  44. Ma, Y.; Li, S.: The pyrolysis, extraction and kinetics of Buton oil sand bitumen. Fuel Process. Technol. 100, 11–15 (2012). https://doi.org/10.1016/j.fuproc.2012.03.001

    Article  Google Scholar 

  45. ASTM E986-04: Standard Practice for Scanning Electron Microscope Beam Size Characterization, ASTM Copyright, vol. 3, pp. 1–3 (1997)

  46. Pereira, M.O., et al.: Investigating counterfeiting of an artwork by XRF, SEM-EDS, FTIR and synchrotron radiation induced MA-XRF at LNLS-BRAZIL. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 246, 11895 (2021). https://doi.org/10.1016/j.saa.2020.118925

    Article  Google Scholar 

  47. Kataki, S.; Hazarika, S.; Baruah, D.C.: Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test. J. Environ. Manag. 196, 201–216 (2017). https://doi.org/10.1016/j.jenvman.2017.02.058

    Article  Google Scholar 

  48. SNI 1969-2008: Cara Uji Berat Jenis dan Penyerapan Air Agregat Kasar. Badan Standarisasi Nasional Indonesia, p. 20 (2008)

  49. SNI 03-1971: Metode Pengujian Kadar Air Agregat, Badan Standarisasi Nasional Indonesia, pp. 3–6 (1990)

  50. SNI-03-6894: Metode pengujian kadar aspal dari campuran beraspal dengan cara sentrifus 1, Badan Standarisasi Nasional Indonesia, pp. 1–6 (2002)

  51. ASTM C131: C131/C131M-14 Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. Annu. B. Am. Soc. Test. Mater. ASTM Standard, Conshohocken, USA, vol. 4, Note 2, pp. 5–8 (2014)

  52. ASTM-C109: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens) 1. In: Chemical Analysis, vol. i, no. C109/C109M-11b, pp. 1–9 (2010)

  53. Uddin, M.A.; Bashir, M.T.; Khan, A.M.; Alsharari, F.; Farid, F.R.: Alrowais Effect of silica fume on compressive strength and water absorption of the portland cement–silica fume blended mortar. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08204-x

    Article  Google Scholar 

  54. ASTM C348: Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. In: Annual Book of ASTM Standards, vol. 4, pp. 2–7 (1998)

  55. Korouzhdeh, T.; Eskandari-Naddaf, H.: Mechanical properties and microstructure evaluation of cement mortar with different cement strength classes by image analysis. Arab. J. Sci. Eng. 47(4), 4763–4783 (2022). https://doi.org/10.1007/s13369-021-06257-4

    Article  Google Scholar 

  56. Kumar, R.; Roy, M.K.; Mishra, M.K.: Synthesis and characterization of biofuel using waste cooking oil obtained by the college canteen. Int. J. Eng. Appl. 6, 66 (2022). https://doi.org/10.15866/irea.v10i6.22002

    Article  Google Scholar 

  57. Widayat; Satriadi, H.; Wibawa, L.P.; Hanif, G.F.; Qomaruddin, M.: Oil and gas characteristics of coal with pyrolysis process. In: AIP Conference Proceedings, vol. 2453 (2022). https://doi.org/10.1063/5.0094759

  58. Zhu, Z.; Tian, H.; Jiang, G.; Dou, B.: Effects of high temperature on rock bulk density. Geomech. Geoengin. 17(2), 647–657 (2022). https://doi.org/10.1080/17486025.2020.1827169

    Article  Google Scholar 

  59. Deef-Allah, E.; Abdelrahman, M.: Interactions between RAP and virgin asphalt binders in field, plant, and lab mixes. World J. Adv. Res. Rev. 13(1), 231–249 (2022)

    Article  Google Scholar 

  60. Yin, Y.; Chen, H.; Kuang, D.; Song, L.; Wang, L.: Effect of chemical composition of aggregate on interfacial adhesion property between aggregate and asphalt. Constr. Build. Mater. 146, 231–237 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.061

    Article  Google Scholar 

  61. Udomkan, N.; Limsuwan, P.: Temperature effects on freshwater snail shells: Pomacea canaliculata Lamarck as investigated by XRD, EDX, SEM and FTIR techniques. Mater. Sci. Eng. C 28(2), 316–319 (2008). https://doi.org/10.1016/j.msec.2007.03.001

    Article  Google Scholar 

  62. Maghsoodi, V.: W/C ratio profile in ITZ of mortar. Arab. J. Sci. Eng. 43(4), 1817–1824 (2018). https://doi.org/10.1007/s13369-017-2757-y

    Article  Google Scholar 

  63. Reinhardt, H.W.: 2013 Factors Affecting the Tensile Properties of Concrete. Woodhead Publishing Limited (2013). https://doi.org/10.1533/9780857097538.1.19

  64. SNI 8457: Rancangan tebal jalan beton untuk lalu lintas rendah, Badan Standardisasi Nasional Indonesia (2017)

  65. Ahmed, M.; Mallick, J.; Abul Hasan, M.: A study of factors affecting the flexural tensile strength of concrete. J. King Saud Univ. Eng. Sci. 28(2), 147–156 (2016). https://doi.org/10.1016/j.jksues.2014.04.001

    Article  Google Scholar 

Download references

Acknowledgements

This paper was funded by a Domestic Postgraduate Education Scholarship (BPPDN) with Letter Number: B/67/D.D3/KD.02.00/2019 from the Ministry of Education, Culture, Research, Technology, Republic of Indonesia.

Funding

This paper was funded by scholarship from Ministry of Education, Culture, Research, Technology, Republic of Indonesia, which the authors gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Contributions

MQ proposing ideas, formal analysis, and writing–review and editing and original draft. HAL contributed to conceptualization, writing, supervising methods, and manuscript checking. Purwanto helped in resources, investigation, and visualization. Widayat contributed to conceptualization, methodology, validation, and manuscript checking. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mochammad Qomaruddin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qomaruddin, M., Lie, H.A., Purwanto et al. Chemical and Microstructural Changes in Reclaimed Asphalt Pavement Aggregates by Pyrolysis. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08698-5

Keywords

Navigation