Skip to main content
Log in

Cathode/Anode Area Ratio on the Sacrificial Cathodic Protection Against Mass Loss of Galvanized Steel Used in Potassium Chloride Fertigation

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Corrosion is one of the most significant problems in irrigation systems, and fertigation may increase its damage. One of the solutions to mitigate this phenomenon would be using cathodic protection combined with piping coating, so it is essential to evaluate the type of sacrificial anodes and the cathode/anode area ratio, variables that change the performance of cathodic protection and its application cost. Thus, this study aimed to validate the effect of Al anodes on the protection against the mass loss of galvanized steel used in fertigation with white KCl solution at 10 g L−1 and verify the influence of the cathode/anode area ratio on the galvanized steel protection and anode consumption. Thus, we conducted immersion tests by simulating 10 years of fertigation to determine the mass loss of the galvanized steel and Al anodes. The results showed that Al anodes significantly reduce the mass loss in galvanized steel exposed to KCl solution, but there is no significant difference in its mass loss with the increase in the cathode/anode area ratio. Regarding the Al anodes, there was also no significant difference in mass loss with the increase in the cathode/anode area ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, M.; Wang, Y.; Adeli, A.; Yan, H.: Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crop Res 218, 115–125 (2018). https://doi.org/10.1016/j.fcr.2018.01.011

    Article  Google Scholar 

  2. Zhao, W.; Shan, Z.; Li, J.; Li, Y.: Effects of fertigation splits through center pivot on the nitrogen uptake, yield, and nitrogen use efficiency of winter wheat grown in the North China Plain. Agric. Water Manag. 240, 106291 (2020). https://doi.org/10.1016/j.agwat.2020.106291

    Article  Google Scholar 

  3. Larue, J.: How can fertigation and chemigation with a center pivot improve sustainability of irrigation corn? In: ASABE Annual International Meeting, Paper Number: 2200208, Minneapolis, Minnesota (2022)

  4. Rodrigues, K.V.; Lima, L.A.; Thebaldi, M.S.: Effects of fertigation on corrosion in galvanized steel used in center pivot systems. Water Supply 20(4), 1189–1194 (2020). https://doi.org/10.2166/ws.2020.029

    Article  Google Scholar 

  5. Tayyab, M.; Abbas, Y.; Hussain, M.W.: Management options for large metropolitans on the verge of a water stress. J. Hum. Earth Future. 3(3), 333–344 (2022). https://doi.org/10.28991/HEF-2022-03-03-06

    Article  Google Scholar 

  6. Delaunois, F.F.; Vitry, T.V.: Corrosion behaviour and biocorrosion of galvanized steel water distribution systems. Bioelectrochemistry 97, 110–119 (2014). https://doi.org/10.1016/j.bioelechem.2014.01.003

    Article  Google Scholar 

  7. LaRue, J.: A review of center pivot pipeline solutions for various water qualities. In: ASABE Meeting Presentation, Paper Number 072286. Minneapolis, Minnesota (2007)

  8. Corrêa, F.V.; Lima, L.A.; Thebaldi, M.S.; Rodrigues, K.V.: Corrosion caused by fertigation with urea and potassium chloride solutions resembles that generated by irrigation. Irrig. Drain. 72, 1–12 (2023). https://doi.org/10.1002/ird.2819

    Article  Google Scholar 

  9. Maraveas, C.: Durability issues and corrosion of structural materials and systems in farm environment. Appl. Sci. 10, 990 (2020). https://doi.org/10.3390/app10030990

    Article  Google Scholar 

  10. Amer, B.A.; Abdel-Aziz, M.H.; El-Ashtoukly, E.S.Z.; Amin, N.K.: Galvanic corrosion of steel in agitated vessels used in fertilizer industry. Theor. Found. Chem. Eng. 53(2), 280–291 (2019). https://doi.org/10.1134/S0040579519020015

    Article  Google Scholar 

  11. Francis, R.; Turnbull, A.; Hinds, G.: Bimetallic corrosion, guides for good practice in corrosion control, No. 5. National Physical Laboratory—NPL (2020)

  12. Saji, V.S.: Review—photoelectrochemical cathodic protection in the dark: a review of nanocomposite and energy-storing photoanodes. J. Electrochem. Soc. 167, 121505 (2020). https://doi.org/10.1149/1945-7111/abad70

    Article  Google Scholar 

  13. Harvey, D.W.: Cathodic protection, guides to good practice in corrosion control, No. 1. National Physical Laboratory—NPL (2019)

  14. Gentil, V.: Corrosão, 7th edn. LTC, Rio de Janeiro (2022)

    Google Scholar 

  15. Farh, H.M.H.; Seghier, M.E.A.B.; Zayed, T.: A comprehensive review of corrosion protection and control techniques for metallic pipelines. Eng. Fail. Anal. 43, 106885 (2023). https://doi.org/10.1016/j.engfailanal.2022.106885

    Article  Google Scholar 

  16. Kleiner, Y.; Rajani, B.: Quantifying effectiveness of cathodic protection in water mains: theory. J. Infrastruct. Syst. 10, 43–51 (2004). https://doi.org/10.1061/(ASCE)1076-0342(2004)10:2(43)

    Article  Google Scholar 

  17. Gurrapa, I.: Cathodic protection of cooling water systems and selection of appropriate materials. J. Mater. Process. Technol. 166, 256–267 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.074

    Article  Google Scholar 

  18. Xi, Y.; Jia, M.; Zhang, J.; Zhang, W.; Yang, D.; Sun, L.: Evaluating the performance of aluminum sacrificial anodes with different concentration of gallium in artificial sea water. Coatings 12(1), 53 (2022). https://doi.org/10.3390/coatings12010053

    Article  Google Scholar 

  19. Pourgharibshahi, M.; Lambert, P.: The role of Indium in the activation of aluminum alloy galvanic anodes. Mater. Corros. 67, 857–866 (2016). https://doi.org/10.1002/maco.201508685

    Article  Google Scholar 

  20. Pryor, M.J.; Keir, D.S.: Galvanic corrosion: II effect of pH and dissolved oxygen concentration on the aluminum-steel couple. J. Electrochem. Soc. 105(11), 629–635 (1958). https://doi.org/10.1149/1.2428681

    Article  Google Scholar 

  21. Standish, T.E.; Braithwaite, L.J.; Shoesmith, D.W.; Noël, J.J.: Influence of area ratio and chloride concentration on the galvanic coupling of copper and carbon steel. J. Electrochem. Soc. 166(11), C3448–C3455 (2019). https://doi.org/10.1149/2.0521911jes

    Article  Google Scholar 

  22. Atshan, A.A.; Hasan, B.O.; Ali, M.H.: Effect of anode type and position on the cathodic protection of carbon steel in sea water. Int. J. Curr. Eng. Technol. 3(5), 2017–2024 (2013)

    Google Scholar 

  23. Jafar, S.A.: The influence of area ratio, temperature and rotational speed on galvanic corrosion between law alloy steel–copper couple in 4%NaCl solution. Eng. Technol. J. 35(6), 617–623 (2017). https://doi.org/10.30684/etj.35.6A.9

    Article  Google Scholar 

  24. Loto, C.A.; Popoola, A.P.I.: Effect of anode and size variations on the cathodic protection of mild steel in sea water and sulphuric acid. Int. J. Phys. Sci. 6(12), 2861–2868 (2011)

    Google Scholar 

  25. Refait, Ph.; Jeannin, M.; Sabot, R.; Antony, H.; Pineau, S.: Corrosion and cathodic protection of carbon steel in the tidal zone: products, mechanisms and kinetics. Corr. Sci. 90, 375–382 (2015). https://doi.org/10.1016/j.corsci.2014.10.035

    Article  Google Scholar 

  26. Loto, C.A.; Loto, R.T.; Popoola, A.P.: Performance evaluation of zinc anodes for cathodic protection of mild steel corrosion in HCl. Chem. Data Collect. 24, 100280 (2019). https://doi.org/10.1016/j.cdc.2019.100280

    Article  Google Scholar 

  27. Owoeye, F.T.; Adetunji, O.R.; Kuye, S.I.; Bada, B.S.: Cathodic protection of aluzinc coated, galvanized and stainless steels in Ijegun seawater using aluminum as sacrificial anode. United Int. J. Res. Technol. 2(2), 81–92 (2020)

    Google Scholar 

  28. Astuti, P.; Rafdinal, R.S.; Yamamoto, D.; Andriamisaharimanana, V.; Hamada, H.: Effective use of sacrificial zinc anode as a suitable repair method for severely damaged RC members due to chloride attack. Civ. Eng. J. 8(7), 1535–1548 (2022). https://doi.org/10.28991/CEJ-2022-08-07-015

    Article  Google Scholar 

  29. Nezgoda, J.; Goudar, J.V.; Brasil, S.L.D.C.: Estudo das camadas calco-magnesianas formadas em superfícies metálicas sob proteção catódica. In: INTERCORR 2016, Associação Brasileira de Corrosão (ABRACO), Búzios (2016)

  30. Rodrigues, K.V.; Lima, L.A.; Thebaldi, M.S.: Use of sacrificial anodes as protection of galvanized steel exposed to potassium chloride and urea fertigation solutions. Arab. J. Sci. Eng. (In press) (2023). https://doi.org/10.1007/s13369-023-08412-5

    Article  Google Scholar 

  31. Tsujino, B.; Miyase, S.: On area ratio of anode to cathode for iron in neutral solution. Corrosion 37(9), 540–545 (1981). https://doi.org/10.5006/1.3580803

    Article  Google Scholar 

  32. Dong, C.F.; Xiao, K.; Li, X.G.; Cheng, Y.F.: Galvanic corrosion of a carbon steel-stainless steel couple in sulfide solutions. J. Mater. Eng. Perform. 20(9), 1631–1637 (2011). https://doi.org/10.1007/s11665-011-9839-x

    Article  Google Scholar 

  33. Pramanik, N.; Kumar, R.; Ray, A.; Chaudhary, V.K.; Ghosh, S.: Corrosion behavior of mild steel in the presence of urea, sodium chloride, potassium chloride, and glycine: a kinetic and potentiodynamic polarization study approach. J. Bio Tribo-Corros. 8, 112 (2022). https://doi.org/10.1007/s40735-022-00713-w

    Article  Google Scholar 

  34. ABNT NBR 6323: Galvanização por imersão a quente de produtos de aço e ferro fundido – Especificação. Associação Brasileira de Normas Técnicas—ABNT, Rio de Janeio (2016)

  35. Wu, Y.H.; Liu, T.M.; Luo, S.X.; Sun, C.: Corrosion characteristics of Q235 steel in simulated Yingtan soil solutions. Mat.-wiss. u. Werkstofftech. 41(3), 42–146 (2010). https://doi.org/10.1002/mawe.201000559

    Article  Google Scholar 

  36. Ferreira, D.F.: SISVAR: a computer analysis system to fixed effects split plot type designs. Rev. Bras. de Biom. 37(4), 529–535 (2019). https://doi.org/10.28951/rbb.v37i4.450

    Article  Google Scholar 

  37. Dong, C.F.; Xiao, K.; Li, X.G.; Cheng, Y.F.: Erosion accelerated corrosion of a carbon steel–stainless steel galvanic couple in a chloride solution. Wear 270, 39–45 (2010). https://doi.org/10.1016/j.wear.2010.09.004

    Article  Google Scholar 

  38. Song, G.; Johannesson, B.; Hapugoda, S.; Stjohn, D.: Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corros. Sci. 46, 955–977 (2004). https://doi.org/10.1016/S0010-938X(03)00190-2

    Article  Google Scholar 

  39. Nwoye, C.I.; Chinwuko, E.C.; Nwosu, I.E.; Onyia, W.C.; Amalu, N.I.; Nwosu, P.C.: Operational dependence of galvanized steel corrosion rate on its structural weight loss and immersion-point pH in sea water environment. Am. J. Min. Metall. 2(4), 81–87 (2014)

    Google Scholar 

  40. NACE SP 07-75: Preparation, installation, analyses, and interpretation of corrosion in oilfield operation. National Association of Corrosion Engineers—NACE, Houston (2013)

  41. Kim, W.; Han, K.; Kim, J.; Yang, S.; Seok, H.; Han, H.; Kim, Y.: Effect of surface area on corrosion properties of magnesium for biomaterials. Met. Mater. Int. 19(5), 1131–1137 (2013). https://doi.org/10.1007/s12540-013-5032-0

    Article  Google Scholar 

  42. Yaro, A.S.; Hameed, K.W.; Khadom, A.A.: Study for prevention of steel corrosion by sacrificial anode cathodic protection. Theor. Found. Chem. Eng. 47(3), 266–273 (2013). https://doi.org/10.1134/S0040579513030147

    Article  Google Scholar 

  43. Prayitno, D.; Irsyad, M.: Effect of ratio of surface area on the corrosion rate. SINERGI 22(1), 7–12 (2018). https://doi.org/10.22441/sinergi.2018.1.002

    Article  Google Scholar 

  44. Bilgic, S.: Galvanic corrosion. In: The Eurasia Proceedings of Science, Technology, Engineering & Mathematics (EPSTEM), vol. 4, pp. 259–262 (2018). http://www.epstem.net/en/download/article-file/598406

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), grant number 001, and by the Department of Water Resources of the Universidade Federal de Lavras (DRH-UFLA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Vilela Rodrigues.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, K.V., Lima, L.A., Thebaldi, M.S. et al. Cathode/Anode Area Ratio on the Sacrificial Cathodic Protection Against Mass Loss of Galvanized Steel Used in Potassium Chloride Fertigation. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08696-7

Keywords

Navigation