Skip to main content
Log in

Predictive Geometallurgical Modeling for Flotation Performance in Mixed Copper Ores Using Discriminatory Methods

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study presents a predictive geometallurgical model for the Ouansimi copper deposit in Morocco, focusing on the flotation of mixed copper ores. The deposit was divided into two geometallurgical domains (GMD) with distinct oxidation rates using K-means clustering. The principal component analysis-partial least squares regression method was applied to establish the relationship between mineralogical features, chemical assay, location factors, and flotation performance, enabling the identification of critical factors influencing flotation responses and offering opportunities for improvement. The developed models for copper and silver in GMD (I) outperformed those in GMD (II). Specifically, the negative impact of copper oxide-bearing minerals’ response to flotation xanthate collectors and refractory copper minerals in the gangue on copper flotation performance was identified. Additionally, the performance of silver, likely occurring as an inclusion within chalcocite, was influenced by the interlocking and association between copper-bearing minerals and dolomite. While valuable insights were gained, knowledge gaps related to the presence of copper oxide minerals in the hypogene stage and the genesis of the Ouansimi deposit were identified. Further investigation is warranted to comprehend better the mode of occurrence and potential upgrading of precious metals in low-grade by-products in the final concentrate. In conclusion, our integrated approach, incorporating geological, mineralogical, and metallurgical data, holds promise for enhancing efficiency and profitability in the mining industry through optimized flotation performance in mixed copper ores. The findings contribute to a deeper understanding of mineral processing challenges and offer valuable insights for future exploration and ore processing strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lund, C.; Lamberg, P.: Geometallurgy–A tool for better resource efficiency. Eur. Geol. 37, 39–43 (2014)

    Google Scholar 

  2. Lishchuk, V.; Koch, P.H.; Ghorbani, Y.; Butcher, A.R.: Towards integrated geometallurgical approach: critical review of current practices and future trends. Miner. Eng. 145, 106072 (2020). https://doi.org/10.1016/j.mineng.2019.106072

    Article  CAS  Google Scholar 

  3. Dominy, S.C.; O’connor, L.; Parbhakar-Fox, A.; Glass, H.J.; Purevgerel, S.: Geometallurgy—A route to more resilient mine operations. Minerals 8, 1–33 (2018). https://doi.org/10.3390/min8120560

    Article  Google Scholar 

  4. Lishchuk, V.; Pettersson, M.: The mechanisms of decision-making when applying geometallurgical approach to the mining industry. Miner. Econ. 34, 71–80 (2021). https://doi.org/10.1007/s13563-020-00220-9

    Article  Google Scholar 

  5. Lishchuk, V.: Bringing predictability into a geometallurgical program : an iron ore case study. (2018)

  6. Rosenkranz, J.; Lamberg, P.: Sustainable processing of mineral resources. Int. J. Soc. Mater. Eng. Resour. 20, 17–22 (2014). https://doi.org/10.5188/ijsmer.20.17

    Article  Google Scholar 

  7. Büttner, P.; Osbahr, I.; Zimmermann, R.; Leißner, T.; Satge, L.; Gutzmer, J.; Cheng, T.C.; Tomlinson, M.A.; Di Feo, A.; Lastra, R.; De Villiers, J.P.R.: How to sustain mineral resources: beneficiation and mineral engineering opportunities. Elements 116, 143–151 (2017). https://doi.org/10.2138/gselements.13.5.307

    Article  CAS  Google Scholar 

  8. Tungpalan, K.; Manlapig, E.; Andrusiewicz, M.; Keeney, L.; Wightman, E.; Edraki, M.: An integrated approach of predicting metallurgical performance relating to variability in deposit characteristics. Miner. Eng. 71, 49–54 (2015). https://doi.org/10.1016/j.mineng.2014.10.004

    Article  CAS  Google Scholar 

  9. Abdollahi, M.; Bahrami, A.; Mirmohammadi, M.S.; Kazemi, F.; Danesh, A.; Ghorbani, Y.: A process mineralogy approach to optimize molybdenite flotation in copper – molybdenum processing plants. Miner. Eng. 157, 106557 (2020). https://doi.org/10.1016/j.mineng.2020.106557

    Article  CAS  Google Scholar 

  10. Nwaila, G.T.; Ghorbani, Y.; Becker, M.; Frimmel, H.E.; Petersen, J.; Zhang, S.: Geometallurgical approach for implications of ore blending on cyanide leaching and adsorption behavior of witwatersrand Gold Ores South Africa. Nat. Resour. Res. 29, 1007–1030 (2020). https://doi.org/10.1007/s11053-019-09522-4

    Article  CAS  Google Scholar 

  11. Harbort, G.; Quan, K.: Concentrator Design - Standard Engineering Practice versus Geometallurgy and Concentrator Design – Standard Engineering Practice versus Geometallurgy and Simulation. (2019)

  12. Dachri, K.; Naji, K.; Nouar, K.; Benzakour, I.; Ouzaouit, K.; Badri, M.; Boussetta, A.; Faqir, H.; El Amari, K.; Hibti, M.: Mineralogical approach-A tool for geometallurgical prediction of Tizert copper deposit (Ighrem inlier, Anti-Atlas, Morocco). J. Min. Environ. 13(1), 33–51 (2022). https://doi.org/10.22044/jme.2022.11576.2144

    Article  Google Scholar 

  13. Benvie, B.; Chapman, N.M.; Robinson, D.J.; Kuhar, L.L.: A robust statistical method for mineralogical analysis in geometallurgical diagnostic leaching. Miner. Eng. 52, 178–183 (2013). https://doi.org/10.1016/j.mineng.2013.06.010

    Article  CAS  Google Scholar 

  14. Dehaine, Q.; Tijsseling, L.T.; Rollinson, G.K.; Buxton, M.W.; Glass, H.J.: Geometallurgical characterisation with portable FTIR: application to sediment-hosted Cu–Co ores. Minerals 12(1), 15 (2021)

    Article  ADS  Google Scholar 

  15. Rincon, J.; Gaydardzhiev, S.; Stamenov, L.: Investigation on the flotation recovery of copper sulphosalts through an integrated mineralogical approach. Miner. Eng. 130, 36–47 (2019). https://doi.org/10.1016/j.mineng.2018.10.006

    Article  CAS  Google Scholar 

  16. Lishchuk, V.; Lund, C.; Koch, P.H.; Gustafsson, M.; Pålsson, B.I.: Geometallurgical characterisation of Leveäniemi iron ore – Unlocking the patterns. Miner. Eng. 131, 325–335 (2019). https://doi.org/10.1016/j.mineng.2018.11.034

    Article  CAS  Google Scholar 

  17. Gallmeier, E.; Zhang, S.; McFarlane, J.: Using PCA and PLS on publicly available data to predict the extractability of hydrocarbons from shales. J. Nat. Gas Sci. Eng. 44, 109–121 (2017). https://doi.org/10.1016/j.jngse.2017.04.018

    Article  Google Scholar 

  18. El Basbas, A.; Aissa, M.; Ouguir, H.; Mahdoudi, M.L.; Madi, A.; Zouhair, M.: Ouansimi copper mineralization (Western Anti-Atlas, Morocco): Paragenetic sequence and circulation of gangue hosted paleofluids. J. Afr. Earth Sci. 162, 103692 (2020). https://doi.org/10.1016/j.jafrearsci.2019.103692

    Article  CAS  Google Scholar 

  19. Atif, Y.; Soulaimani, A.; Ait Lahna, A.; Yaagoub, D.; Youbi, N.; Pour, A.B.; Hashim, M.: Structural analysis and paleostress evolution in the imiter silver mining region, Eastern Anti Atlas, Morocco: implications for mineral exploration. Minerals (2022). https://doi.org/10.3390/min12121563

    Article  Google Scholar 

  20. Lishchuk, V.; Lamberg, P.; Lund, C.: Evaluation of sampling in geometallurgical programs through synthetic deposit model. In IMPC 2016 - 28th International Mineral Processing Congress 2016-September (2016)

  21. Dominy, S.C.; O’Connor, L.; Glass, H.J.; Purevgerel, S.; Xie, Y.: Towards representative metallurgical sampling and gold recovery testwork programmes. Minerals 8, 193 (2018). https://doi.org/10.3390/MIN8050193

    Article  ADS  Google Scholar 

  22. Dominy, S.C.; O’Connor, L.; Purevgerel, S.: Importance of representative metallurgical sampling and testwork programmes to reduce project risk–a gold case study. Mining Technol. 128(4), 230–245 (2019). https://doi.org/10.1080/25726668.2019.1628462

    Article  Google Scholar 

  23. Dominy, S.C.; Glass, H.J.; O’Connor, L.; Lam, C.K.; Purevgerel, S.; Minnitt, R.C.A.: Integrating the theory of sampling into underground mine grade control strategies. Minerals 8, 232 (2018). https://doi.org/10.3390/MIN8060232

    Article  ADS  Google Scholar 

  24. Warr, L.N.: IMA–CNMNC approved mineral symbols. Mineral. Mag. 85, 291–320 (2021). https://doi.org/10.1180/mgm.2021.43

    Article  CAS  Google Scholar 

  25. Suazo, C.J.; Kracht, W.; Alruiz, O.M.: Geometallurgical modelling of the Collahuasi flotation circuit. Miner. Eng. 23, 137–142 (2010). https://doi.org/10.1016/J.MINENG.2009.11.005

    Article  CAS  Google Scholar 

  26. Tijsseling, L.T.; Dehaine, Q.; Rollinson, G.K.; Glass, H.J.: Mineralogical prediction of flotation performance for a sediment-hosted copper–cobalt sulphide ore. Minerals 10, 1–21 (2020). https://doi.org/10.3390/min10050474

    Article  CAS  Google Scholar 

  27. Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intell. 27(2), 83–85 (2005)

    Article  Google Scholar 

  28. Arthur, D.; Vassilvitskii, S.: k-means++: the advantages of careful seeding. (2006)

  29. Géron, A.: Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and techniques to build intelligent systems. p. 547

  30. Kettaneh, N.; Berglund, A.; Wold, S.: PCA and PLS with very large data sets. Comput. Stat. Data Anal. 48, 69–85 (2005). https://doi.org/10.1016/j.csda.2003.11.027

    Article  MathSciNet  Google Scholar 

  31. Wold, S.; Sjöström, M.; Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001). https://doi.org/10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  32. Umetrics: Multivariate Data Analysis and Modelling Basic Course Multivariate Data Analysis and Modelling Basic MVDA Multivariate Data Analysis and Modelling Additional Topics. (2002)

  33. Shmueli, G.; Ray, S.; Manuel, J.; Estrada, V.; Chatla, S.B.: The elephant in the room: predictive performance of PLS models. J. Bus. Res. (2016). https://doi.org/10.1016/j.jbusres.2016.03.049

    Article  Google Scholar 

  34. Trista, D.; Kojima, S.: Mineral paragenesis and fluid inclusions of some pluton-hosted vein-type copper deposits in the Coastal Cordillera, northern Chile. Resour. Geol. 53, 21–28 (2003). https://doi.org/10.1111/j.1751-3928.2003.tb00154.x

    Article  CAS  Google Scholar 

  35. Zhou, R.; Chander, S.: Kinetics of sulfidization of malachite in hydrosulfide and tetrasulfide solutions. Int. J. Miner. Process. 37, 257–272 (1993). https://doi.org/10.1016/0301-7516(93)90030-E

    Article  CAS  Google Scholar 

  36. Aird, H.M.; Purcell, C.K.; DeWitt, N.; Matthews, J.; Capurro, T.; Claiborne, J.; Bermudez, J.; Meisel, Z.: Gold-and silver-bearing assemblages in the Ann-Mason copper porphyry deposit, Yerington, Nevada. Ore Geol. Rev. 138, 104339 (2021). https://doi.org/10.1016/j.oregeorev.2021.104339

    Article  Google Scholar 

  37. Palyanova, G.A.: Gold and silver minerals in sulfide ore. Geol. Ore Depos. 62, 383–406 (2020). https://doi.org/10.1134/S1075701520050050

    Article  ADS  Google Scholar 

  38. Dowling, E.C.; Klimpel, R.R.; Aplan, F.F.: Model discrimination in the flotation of a porphyry copper. Ore. Trans. Am. Inst. Min. Metall. Pet. Eng. Soc. 278, 87–102 (1985)

    Google Scholar 

  39. Martens, H.; Høy, M.; Westad, F.; Folkenberg, D.; Martens, M.: Analysis of designed experiments by stabilised PLS regression and jack-knifing. Chemom. Intell. Lab. Syst. 58, 151–170 (2001). https://doi.org/10.1016/S0169-7439(01)00157-5

    Article  CAS  Google Scholar 

  40. Wills, B.A.; Finch, J.A.: Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Butterworth-Heinemann, Oxford (2015)

    Google Scholar 

  41. Feng, Q.; Yang, W.; Wen, S.; Wang, H.; Zhao, W.; Han, G.: Flotation of copper oxide minerals: a review. Int. J. Min. Sci. Technol. 32, 1351–1364 (2022). https://doi.org/10.1016/J.IJMST.2022.09.011

    Article  CAS  Google Scholar 

  42. Liu, S.; Xie, L.; Liu, J.; Liu, G.; Zhong, H.; Wang, Y.; Zeng, H.: Probing the interactions of hydroxamic acid and mineral surfaces: molecular mechanism underlying the selective separation. Chem. Eng. J. 374, 123–132 (2019). https://doi.org/10.1016/j.cej.2019.05.152

    Article  CAS  Google Scholar 

  43. Bruckard, W.J.; Somerville, M.; Hao, F.: The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pilot plant smelting trials. Miner. Eng. 17, 495–504 (2004). https://doi.org/10.1016/j.mineng.2003.12.004

    Article  CAS  Google Scholar 

  44. Goh, S.W.; Buckley, A.N.; Lamb, R.N.; Rosenberg, R.A.; Moran, D.: Crystal chemistry and electrical properties of the delafossite structure. Geochim. Cosmochim. Acta 70, 2210–2228 (2006). https://doi.org/10.1016/j.gca.2006.02.007

    Article  CAS  ADS  Google Scholar 

  45. Sarkar, S.C.; Deb, M.: Delafossite from Mina Remolinos Nuevo, Atacama province, northern Chile. pp. 425–427. (1969)

  46. Paquot, F.X.; Ngulube, C.: Development and optimization of mixed sulphide/oxide copper ore treatment at Kansanshi. J. South. Afr. Inst. Min. Metall. 115, 1253–1258 (2015). https://doi.org/10.17159/2411-9717/2015/v115n12a15

    Article  CAS  Google Scholar 

  47. Bandini, P.; Prestidge, C.A.; Ralston, J.: Colloidal iron oxide slime coatings and galena particle flotation. Miner. Eng. 14, 487–497 (2001). https://doi.org/10.1016/S0892-6875(01)00036-X

    Article  CAS  Google Scholar 

  48. Rabieh, A.; Albijanic, B.; Eksteen, J.J.: A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations. Miner. Eng. 94, 21–28 (2016). https://doi.org/10.1016/j.mineng.2016.04.012

    Article  CAS  Google Scholar 

  49. Hanson, J.S.; Fuerstenau, D.W.: The electrochemical and flotation behavior of chalcocite and mixed oxide/sulfide ores. Int. J. Miner. Process. 33(1–4), 33–47 (1991)

    Article  CAS  Google Scholar 

  50. Maksimainen, T.; Luukkanen, S.; Mörsky, P.; Kalapudas, R.: The effect of grinding environment on flotation of sulphide poor PGE ores. Miner. Eng. 23, 908–914 (2010). https://doi.org/10.1016/j.mineng.2010.03.001

    Article  CAS  Google Scholar 

  51. Chen, X.; Peng, Y.; Bradshaw, D.: The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Miner. Eng. 58, 64–72 (2014). https://doi.org/10.1016/j.mineng.2014.01.010

    Article  CAS  Google Scholar 

  52. Lotter, N.O.; Bradshaw, D.J.; Barnes, A.R.: Classification of the major copper sulphides into semiconductor types, and associated flotation characteristics. Miner. Eng. 96–97, 177–184 (2016). https://doi.org/10.1016/j.mineng.2016.05.016

    Article  CAS  Google Scholar 

  53. Pérez-barnuevo, L.; Pirard, E.; Castroviejo, R.: Automated characterisation of intergrowth textures in mineral particles. A case study. Miner. Eng. 52, 136–142 (2013). https://doi.org/10.1016/j.mineng.2013.05.001

    Article  CAS  Google Scholar 

  54. Craig, J.R.; Vaughan, D.J.; Hagni, R.D.: Ore microscopy and ore petrography. Wiley, New York (1981)

    Google Scholar 

  55. Edition, S.: Surface Chemistry Surface Chemistry of Froth Flotation Volume 1: Fundamentals

  56. Eskdale, A.E.; Smith, D.J.; Ene, V.V.; Negulici, M.; Onescu, D.: Economic by-products in copper porphyries: silver in the ascutita Cu-porphyry Romania. Ore Geol. Rev. 150, 105135 (2022). https://doi.org/10.1016/J.OREGEOREV.2022.105135

    Article  Google Scholar 

  57. Azizi, M.; Mohamed, A.; Ali, A.; Mohamed, E.A.; Hafid, M.; Muhammad, S.; Abdel-ali, K.; Abdelaziz, E.B.: Mineralogical expression of silver in copper sulfides of Tagmout deposit (Eastern Anti-Atlas, Morocco). Arab. J. Geosci. 12, 1–9 (2019). https://doi.org/10.1007/s12517-019-4884-0

    Article  CAS  Google Scholar 

  58. Kelepile, T.; Bineli Betsi, T.; Franchi, F.; Shemang, E.: Partitioning and distribution of silver in sediment-hosted Cu–Ag deposits: evidence from the Ghanzi-Chobe Belt portion of the Kalahari Copper Belt. Ore Geol. Rev. 124, 103663 (2020). https://doi.org/10.1016/j.oregeorev.2020.103663

    Article  Google Scholar 

  59. Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Slattery, A.; Verdugo-Ihl, M.R.; Courtney-Davies, L.; Gao, W.: Advances and opportunities in ore mineralogy. Minerals 7, 1–24 (2017). https://doi.org/10.3390/min7120233

    Article  CAS  Google Scholar 

  60. King, A.P.; Eckersley, R.J.: Inferential statistics III: nonparametric hypothesis testing. Stat. Biomed. Eng. Sci. (2019). https://doi.org/10.1016/B978-0-08-102939-8.00015-3

    Article  Google Scholar 

  61. Aubuchon, J.C.; Hettmansperger, T.P.: 12 On the use of rank tests and estimates in the linear model. Handb. Stat. 4, 259–274 (1984). https://doi.org/10.1016/S0169-7161(84)04014-1

    Article  Google Scholar 

  62. Lehmann, B.: Economic geology of rare-earth elements in 2014: a global perspective. Eur. Geol. 37, 21–24 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank REMINEX’s research center sincerely. Their generous financial support, access to necessary facilities, and invaluable assistance in performing sample preparation, flotation tests, and various characterization and analysis were instrumental to the successful conduct of our research. Thanks should also go to the anonymous reviewers whose suggestions improved the quality of the present research publication.

Author information

Authors and Affiliations

Authors

Contributions

[RF], [KN], and [MAA] contributed to conceptualization. [RF], [KN], [MAA], and [HO] were involved in methodology. [RF], [HO], [KN], and [MAA] contributed to formal analysis and investigation. [RF] was involved in writing—original draft preparation. [RF], [IB], [HF], and [MAA] contributed to writing—review and editing. [RF], [KN], and [HO] were involved in funding acquisition. [IB], [HF], [RF], [KN], [HT], [MAA], [RF], and [HO] contributed to resources. [IB], [HF], and [MAA] were involved in supervision.

Corresponding author

Correspondence to Rachid Faouzi.

Ethics declarations

Conflict of interest

The authors declare no competing interests, financial or non-financial, related to the work submitted for publication and have disclosed all relevant funding, employment, and affiliations. All financial and non-financial interests that could impact the work or embarrass the authors if publicly known have been reported. This manuscript is a primary research article and requires a disclosure statement, which the authors have provided in compliance with journal guidelines, ensuring transparency and completeness in reporting all relevant information.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faouzi, R., Oumesaoud, H., Naji, K. et al. Predictive Geometallurgical Modeling for Flotation Performance in Mixed Copper Ores Using Discriminatory Methods. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08691-y

Keywords

Navigation