Skip to main content
Log in

A Novel Water-in-Oil-in-Water Double Nanoemulsion of α-Mangostin and Kojic Acid for Topical Applications

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nano-formulated skin care products with skin whitening effects are in high demand, particularly for Asians, because of better topical delivery and enhanced permeation. While single nano-formulated α-mangostin or kojic acid (KA)-containing emulsions are popular, the double emulsion formulation system remains lacking. The study formulated a water-in-oil-in-water (W/O/W) double emulsion containing α-mangostin and kojic acid (KA) using a combined high-energy method, followed by physicochemical characterization and sensory evaluation. Both centrifugal and freeze–thaw cycle tests proved that the W/O/W double emulsion was obtained and highly stable. Initial skin spread skin tests showed that X2 (4% Span 80, 1.5% xanthan gum) and X3 (2% Span 80, 2% xanthan gum) were absorbed rapidly through the skin, more so for X2. The high conductivity value of X2 (5.86–6.93 µS/cm) gave a mean particle size (MPS) and PDI of 195.9 nm ± 1.308 and 0.272 ± 0.003, respectively, atomic force micrograph’s droplet size (154.34 ± 37.521 nm). Likewise, phase separation was absent in the long-term storage stability test (seven weeks) at 25 ± 2 °C, retaining good zeta potential ( − 36.13 ± 2.97 mV), pH (4.39 ± 0.09), MPS (162.9–418.9 nm), and PDI (0.272–0.525 nm). The generally nonlinear room plot proved that the X2 destabilization was not coalescence-related but a late onset of Ostwald ripening. The sensory evaluation results proved the α-mangostin and KA W/O/W double nanoemulsion’s comparability to a commercial cream, with the former scoring substantially higher for aroma, thickness, and spreadability (8.0). Thus, the study’s findings conveyed the double nanoemulsion's promising use in the cosmeceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Insights, F.B. Skincare market size, share & COVID-19 impact analysis, by product (Creams, lotions, powders, sprays, and others), Packaging type (tube, bottle, jar, and others), Gender (men and women), distribution channel (cosmetic stores, supermarkets/ hypermarkets, online channels, and others), and regional Forecasts, 2021 – 2028. 2021 23 Nov, 2021 [cited 2021 24 Nov]; Aug, 2021:[Available from: https://www.fortunebusinessinsights.com/skin-care-market-102544.

  2. Cheng, A.D., et al.: Skin-lightening products: consumer preferences and costs. Cureus 13(8), e17245 (2021)

    Google Scholar 

  3. Boon, L.K.; Fern, Y.S.; Chee, L.H.: Generation Y’s purchase intention towards natural skincare products - A PLS-SEM analysis. Glob Bus Manag Res 12, 61–77 (2020)

    Google Scholar 

  4. Mohd-Nasir, H.; Mohd-Setapar, S.H.: Natural ingredients in cosmetics from malaysian plants: a review. Sains Malaysiana 47(5), 951–959 (2018)

    Article  Google Scholar 

  5. Fajeriyati, N.; Muchtaridi, M.; Sopyan, I.: Methods for improving alpha-mangostin solubility: a review. Int. J. Appl. Pharm. (2021). https://doi.org/10.22159/ijap.2021v13i4.39065

    Article  Google Scholar 

  6. Wathoni, N., et al.: Nanoparticle drug delivery systems for alpha-mangostin. Nanotechnol. Sci. Appl. 13, 23–36 (2020)

    Article  Google Scholar 

  7. Ibrahim, M.Y., et al.: α-Mangostin from Garcinia mangostana Linn: an updated review of its pharmacological properties. Arab. J. Chem. 9(3), 317–329 (2016)

    Article  Google Scholar 

  8. Asasutjarit, R., et al.: Physicochemical properties of alpha-mangostin loaded nanomeulsions prepared by ultrasonication technique. Heliyon 5(9), e02465 (2019)

    Article  Google Scholar 

  9. Mulia, K.; Ramadhan, R.M.A.; Krisanti, E.A.: Formulation and characterization of nanoemulgel mangosteen extract in virgin coconut oil for topical formulation. MATEC Web Conf. 156, 01013 (2018)

    Article  Google Scholar 

  10. Sungpud, C., et al.: Techno-biofunctionality of mangostin extract-loaded virgin coconut oil nanoemulsion and nanoemulgel. PLoS ONE 15(1), e0227979 (2020)

    Article  Google Scholar 

  11. Hassan, W., et al.: Antioxidant and tyrosinase inhibition activities of α-mangostin and Garcinia mangostana Linn. pericarp extracts. J. Appl. Pharm. Sci. 5(9), 037–040 (2015)

    Article  Google Scholar 

  12. Arif, N.J., et al.: Development of lightening cream from mangosteen pericarp extract with olivoil emulsifier. In 2014 4th International conference on education, research and innovation. Bangkok,Thailand: IACSIT Press, Singapore (2014)

  13. Limphapayom, W., et al.: Encapsulation of alpha-mangostin in cosmetic production by using nanotechnology. Acta Hort. 1186, 189–192 (2017)

    Article  Google Scholar 

  14. Mulia, K.; Putri, G.A.; Krisanti, E.: Encapsulation of mangosteen extract in virgin coconut oil based nanoemulsions: preparation and characterization for topical formulation. Mater. Sci. Forum 929, 234–242 (2018)

    Article  Google Scholar 

  15. Bashif, F., et al.: Kojic acid: a comprehensive review. Am. J. Agricult. Horticult. Soil Sci. 6(1), 13–21 (2021)

    Google Scholar 

  16. Saeedi, M.; Eslamifar, M.; Khezri, K.: Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed Pharmacother 110, 582–593 (2019)

    Article  Google Scholar 

  17. Saeedi, M.; Eslamifar, M.; Khezri, K.: Kojic acid applications in cosmetic and pharmaceutical preparations. Biomed. Pharmacother. 110, 582–593 (2019)

    Article  Google Scholar 

  18. Dinshaw, I.J., et al.: Nanoemulsions: a review on the conceptualization of treatment for psoriasis using a “green” surfactant with low-energy emulsification method. Pharmaceutics 13(7), 1024 (2021)

    Article  Google Scholar 

  19. Giri, T.K., et al.: Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharm. J. 21(2), 125–141 (2013)

    Article  Google Scholar 

  20. Gupta, P.K., et al.: An update on nanoemulsions using nanosized liquid in liquid colloidal systems. IntechOpen (2019)

  21. Agrawal, A.; Kulkarni, S.; Sharma, S.B.: Recent advancements and applications of multiple emulsions. Int. J. Adv. Pharm. 4(6), 94–103 (2015)

    Google Scholar 

  22. Bhatia, N., et al.: A review on multiple emulsions. Int. J. Pharm. Erud. 3(2), 22–30 (2013)

    Google Scholar 

  23. Mahmood, T.; Akhtar, N.; Manickam, S.: Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability. J. Nanobiotechnol. 12(1), 1–8 (2014)

    Article  Google Scholar 

  24. Yun, G.Y., et al.: Formulation and characterization of a kinetically stable topical nanoemulsion containing the whitening agent kojic acid. Indones. J. Chem. 21(2), 400–410 (2021)

    Article  Google Scholar 

  25. Balestrin, L., et al.: Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage. J. Photochem. Photobiol., B 163, 269–276 (2016)

    Article  Google Scholar 

  26. Wang, Q., et al.: Influence of β-cyclodextrin concentration on the physicochemical properties and skin permeation behavior of vitamin C-loaded Pickering water-in-oil-in-water (W1/O/W2) double emulsions. J Drug Deliv Sci Technol 72, 103368 (2022)

    Article  Google Scholar 

  27. Huma, S., et al.: Development of niacinamide/ferulic acid-loaded multiple emulsion and its in vitro/in vivo investigation as a cosmeceutical product. BioMed Res. Int. (2022). https://doi.org/10.1155/2022/1725053

    Article  Google Scholar 

  28. Snoussi, A., et al.: Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: study of release kinetics, rheological, and thermodynamic properties. J. Mol. Liq. 311, 113304 (2020)

    Article  Google Scholar 

  29. Velderrain-Rodríguez, G.R., et al.: Encapsulation and stability of a phenolic-rich extract from mango peel within water-in-oil-in-water emulsions. J. Funct. Foods 56, 65–73 (2019)

    Article  Google Scholar 

  30. Shin, H.-J., et al.: Development and evaluation of topical formulations for a novel skin whitening agent (AP736) using Hansen solubility parameters and PEG-PCL polymers. Int. J. Pharm. 552(1–2), 251–257 (2018)

    Article  Google Scholar 

  31. Surini, S.; Negoro, N.M.: Development of microemulsion and water/oil/water multiple emulsion containing beta-arbutin, lactic acid, and sodium ascorbyl phosphate. Int. J. Appl. Pharm. 12(Special issue 1), 212–220 (2020)

    Article  Google Scholar 

  32. Surini, S.; Negoro, N.M.: Development of microemulsion and water/oil/water multiple emulsion containing beta-arbutin, lactic acid, and sodium ascorbyl phosphate. Int. J. Appl. Pharm. (2020). https://doi.org/10.22159/ijap.2020.v12s1.FF048

    Article  Google Scholar 

  33. Akhtar, N., et al.: Formulation and characterization of a multiple emulsion containing 1% L-Ascorbic acid. Bull. Chem. Soc. Ethiop 24(1), 1–10 (2010)

    Article  MathSciNet  Google Scholar 

  34. Eid, A.M.M.; Elmarzugi, N.A.; El-enshasy, H.A.: Preparation and evaluation of olive oil nanoemulsion using sucrose monoester. Int. J. Pharm. Pharm. Sci. 5, 434–440 (2013)

    Google Scholar 

  35. Danaei, M., et al.: Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 10(2), 57 (2018)

    Article  Google Scholar 

  36. Lewińska, A.: Optimizing the process design of oil-in-water nanoemulsion for delivering poorly soluble cannabidiol oil. Processes 9(7), 1180 (2021)

    Article  Google Scholar 

  37. Kulkarni, K.B., et al.: Formulation and evaluation of nanoemulsion for topical application. J. Drug Deliv. Therapeut. 9(4s), 370–375 (2019)

    Google Scholar 

  38. Mahmood, T.; Akhtar, N.; Manickam, S.: Interfacial film stabilized W-O-W nano multiple emulsions loaded with green tea and lotus extract - Systematic characterization of physicochemical properties and shelf-storage stability. J. Nanobiotechnol. 12(1), 20 (2014)

    Article  Google Scholar 

  39. Schmidts, T., et al.: Development of multiple W/O/W emulsions as dermal carrier system for oligonucleotides: effect of additives on emulsion stability. Int. J. Pharm. 398(1–2), 107–113 (2010)

    Article  Google Scholar 

  40. Ogundipe, O.D.; Oladimeji, F.A.: Water-in-oil-in-water multiple emulsions of ibuprofen for paediatrics using African walnut seed oil. J. Appl. Pharm. Res. 7(1), 08–22 (2019)

    Google Scholar 

  41. Hanifah, M.; Jufri, M.: Formulation and stability testing of nanoemulsion lotion containing centella asiatica extract. J. Young Pharm. 10(4), 404–408 (2018)

    Article  Google Scholar 

  42. Tadros, T.F.: Emulsion formation, stability, and rheology. Emul. Format. Stabil. 1, 1–75 (2013)

    Google Scholar 

  43. Azhar, S.N.A.S.; Ashari, S.E.; Salim, N.: Development of a kojic monooleate-enriched oil-in-water nanoemulsion as a potential carrier for hyperpigmentation treatment. Int. J. Nanomed. 13, 6465 (2018)

    Article  Google Scholar 

  44. Baba Shekh, A.O.; Abdul Wahab, R.; Yahya, N.A.: Formulation of roselle extract water-in-oil nanoemulsion for controlled pulmonary delivery. J. Dispers. Sci. Technol. (2022). https://doi.org/10.1080/01932691.2022.2046044

    Article  Google Scholar 

  45. Mosquera Tayupanta, Td.I.Á., et al.: Sensory analysis of cosmetic formulations made with essential oils of Aristeguietia glutinosa (matico) and Ocotea quixos (ishpingo). Int. J. Phytocosmet. Nat. Ingred. 5(1), 5–5 (2018)

    Article  Google Scholar 

  46. Aust, L.B., et al.: The descriptive analysis of skin care products by a trained panel of judge. J. Soc. Cosmet. Chem. 38, 443–449 (1987)

    Google Scholar 

  47. Balboa, E., et al.: Sensory evaluation and oxidative stability of a suncream formulated with thermal spring waters from ourense (NW Spain) and sargassum muticum extracts. Cosmetics 4(2), 19 (2017)

    Article  Google Scholar 

  48. Pensé-Lhéritier, A.M.: Recent developments in the sensorial assessment of cosmetic products: a review. Int. J. Cosmet. Sci. 37(5), 465–473 (2015)

    Article  Google Scholar 

  49. Lomarat, P., et al.: Three functional foods from Garcinia mangostana L. using low-α-mangostin aqueous extract of the pericarp: product development, bioactive compound extractions and analyses, and sensory evaluation. Thai J. Pharm. Sci. 43(1), 49–56 (2018)

    Google Scholar 

  50. Montenegro, L., et al.: Effects of lipids and emulsifiers on the physicochemical and sensory properties of cosmetic emulsions containing vitamin E. Cosmetics 2(1), 35–47 (2015)

    Article  Google Scholar 

  51. Romes, N.B., et al.: D-optimal design-assisted Elaeis guineensis leaves extract in olive oil-sunflower seed nanoemulsions: development, characterization, and physical stability. J. Dispersion Sci. Technol. 43(2), 289–301 (2022)

    Article  Google Scholar 

  52. Miller, R.: Emulsifiers: types and uses. In: Encyclopedia of food and health, pp. 498–502. Elsevier, Amsterdam (2016)

    Chapter  Google Scholar 

  53. Ahmadi, O.; Jafarizadeh-Malmiri, H.: Intensification process in thyme essential oil nanoemulsion preparation based on subcritical water as green solvent and six different emulsifiers. Green Process. Syn. 10(1), 430–439 (2021)

    Article  Google Scholar 

  54. Marzuki, N.H.C.; Wahab, R.A.; Hamid, M.I.: An overview of nanoemulsion: concepts of development and cosmeceutical applications. Biotechnol. Biotechnol. Equip. 33(1), 779–797 (2019)

    Article  Google Scholar 

  55. Barhoum, A., et al.: Physicochemical characterization of nanomaterials: polymorph, composition, wettability, and thermal stability. In: Emerging applications of nanoparticles and architecture nanostructures, pp. 255–278. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  56. Harimurti, N.; Nasikin, M.; Mulia, K.: Water-in-oil-in-water nanoemulsions containing Temulawak (Curcuma xanthorriza Roxb) and red dragon fruit (Hylocereus polyrhizus) extracts. Molecules 26(1), 196 (2021)

    Article  Google Scholar 

  57. Krisanti, E.A.; Kirana, D.P.; Mulia, K.: Nanoemulsions containing Garcinia mangostana L. pericarp extract for topical applications: development, characterization, and in vitro percutaneous penetration assay. PLoS One 16(12), e0261792 (2021)

    Article  Google Scholar 

  58. Saharudin, S.H.; Ahmad, Z.; Basri, M.: Role of xanthan gum on physicochemical and rheological properties of rice bran oil emulsion. Int. Food Res. J. 23(4), 1361–1366 (2016)

    Google Scholar 

  59. Yahya, N.A., et al.: Optimization of oil-in-water nanoemulsion system of Ananas comosus peels extract by D-optimal mixture design and its physicochemical properties. J. Dispersion Sci. Technol. 43(2), 302–315 (2022)

    Article  Google Scholar 

  60. Feng, J., et al.: Printed aerogels: chemistry, processing, and applications. Chem Soc Rev 50(6), 3842–3888 (2021)

    Article  MathSciNet  Google Scholar 

  61. Wall, M.N., Understanding shear thinning using Brownian dynamics simulation, in Departmental of Chemistry and Physics. 2021, University of Tennessee at Chattanooga. p. 49.

  62. Mewis, J.; Wagner, N.J.: Colloidal suspension rheology. In: Varma, A. (Ed.) United States of America, p. 416. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  63. Jakab, G., et al.: Optimization of quality attributes and atomic force microscopy imaging of reconstituted nanodroplets in baicalin loaded self-nanoemulsifying formulations. Pharmaceutics 10(4), 275 (2018)

    Article  Google Scholar 

  64. Ho, T.M., F. Abik, and K.S. Mikkonen, An overview of nanoemulsion characterization via atomic force microscopy. Crit Rev Food Sci Nutr, 2021: p. 1–21.

  65. Jaiswal, M.; Dudhe, R.; Sharma, P.K.: Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech 5(2), 123–127 (2015)

    Article  Google Scholar 

  66. Gallarate, M., et al.: Photostability of naturally occurring whitening agents in cosmetic microemulsions. J. Cosmet. Sci. 55(2), 139–148 (2003)

    Google Scholar 

  67. Shi, Y., et al.: Nano-emulsion prepared by high pressure homogenization method as a good carrier for Sichuan pepper essential oil: preparation, stability, and bioactivity. LWT 154, 112779 (2022)

    Article  Google Scholar 

  68. Roselan, M.A., et al.: An improved nanoemulsion formulation containing kojic monooleate: optimization, characterization and in vitro studies. Molecules 25(11), 2616 (2020)

    Article  Google Scholar 

  69. Aswathanarayan, J.B.; Vittal, R.R.: Nanoemulsions and their potential applications in food industry. Front. Sustain. Food Syst. (2019). https://doi.org/10.3389/fsufs.2019.00095

    Article  Google Scholar 

  70. Romes, N.B., et al.: Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Sci. Rep. 11(1), 20851 (2021)

    Article  Google Scholar 

  71. Gupta, A., et al.: Nanoemulsions: formation, properties and applications. Soft Matter 12(11), 2826–2841 (2016)

    Article  Google Scholar 

  72. Musa, S.H., et al.: Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int. J. Nanomed. 12, 2427–2441 (2017)

    Article  Google Scholar 

  73. Chung, C.; McClements, D.J.: Characterization of physicochemical properties of nanoemulsions: appearance, stability, and rheology. In: Nanoemulsions, pp. 547–576. Elsevier, Amsterdam (2018)

    Chapter  Google Scholar 

  74. Holota, T., et al.: Application of radar chart in the selection of material for clutch plates. Acta Univers. Agricult. Silvicult. Mendel. Brun. 63(1), 39–43 (2015)

    Article  Google Scholar 

  75. Turek, P.: Color modification of the face cream and its general sensory quality. Towaroznawcze Problemy Jakości 4(53), 139–147 (2017)

    Google Scholar 

  76. Bogdan, C., et al.: Preliminary study on the development of an antistretch marks water-in-oil cream: ultrasound assessment, texture analysis, and sensory analysis. Clin. Cosmet. Investig. Dermatol. 9, 249 (2016)

    Article  Google Scholar 

  77. Ali, A., et al.: Relationship between sensorial and physical characteristics of topical creams: a comparative study on effects of excipients. Int J Pharm 613, 121370 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Grant Scheme (QJ130000.2526.17H48) from the Ministry of Higher Education of Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roswanira Abdul Wahab.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H.A., Wahab, R.A., rehman, G.U. et al. A Novel Water-in-Oil-in-Water Double Nanoemulsion of α-Mangostin and Kojic Acid for Topical Applications. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-023-08659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-023-08659-y

Keywords

Navigation