Skip to main content
Log in

Diagenetic Controls on Reservoir Porosity of Aeolian and Fluvial Deposits: A Case Study from Permo-Carboniferous Sandstones of Saudi Arabia

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Continental sandstones of aeolian and fluvial systems are major reservoir targets for petroleum and CO2 storage in several places worldwide. The Permo-Carboniferous sandstones in Saudi Arabia are significant aeolian and fluvial, owing to their huge hydrocarbon reserves. Previous studies have documented the sedimentology, stratigraphy, and hydrocarbon potentials of the reservoirs. Nevertheless, the roles of grain-rimming illite, other clays (kaolinite and chlorite), and cements on porosity evolution of the sandstones are poorly constrained in the literature. We utilized a multi-technique approach consisting of petrography, X-ray powder diffraction, and scanning electron microscope to study the composition, textural features, diagenesis, and role of grain-rimming illite in arresting quartz cementation within aeolian and fluvial sandstones. Our findings indicate that illite coatings inhibited quartz cementation, and 40% illite-coating coverage efficiently restricted the growth of authigenic quartz cement. Intergranular illite and quartz cement were the most abundant cements that significantly impacted reservoir quality. However, porosity was chiefly reduced owing to compaction rather than cementation. Fluvial sands have poor reservoir quality due to low mechanical infiltration to emplace grain-coating clays and high amounts of co-deposited clays that occluded intergranular porosity and blocked pore throats in the sandstones. The grain size was found not to influence illite-coating coverage. Overall, carbonate and Fe-oxides (hematite) cements have less influence on reservoir quality. A total intergranular cement (clays, carbonates, and Fe-oxides) volume between 20 and 30% has a detrimental effect on intergranular porosity. The results of the study can be utilized to understand better and predict reservoir quality in sandstones of similar depositional settings around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aro, O.E.; Jones, S.J.; Meadows, N.S.; Gluyas, J.; Charlaftis, D.: The importance of facies, grain size, and clay content in controlling fluvial reservoir quality–an example from the Triassic Skagerrak Formation, Central North Sea, UK. PG. petgeo2022–043 (2023). https://doi.org/10.1144/petgeo2022-043

  2. Menacherry, S.; Kaldi, J.; Lang, S.; Payenberg, T.: Suitability of the dryland fluvial-aeolian sediments and its depositional system for CO2 sequestration, analogues study from Umbum Creek, Lake Eyre, Central Australia. In: Presented at the AAPG International Conference and Exhibition, Cape Town, South Africa (2009)

  3. Stricker, S.; Jones, S.J.: Enhanced porosity preservation by pore fluid overpressure and chlorite grain coatings in the Triassic Skagerrak, Central Graben, North Sea. UK. Geol. Soc. Spec. Publ. 435, 321–341 (2018). https://doi.org/10.1144/SP435.4

    Article  Google Scholar 

  4. Tang, L.; Gluyas, J.; Jones, S.: Porosity preservation due to grain coating illite/smectite: evidence from Buchan Formation (Upper Devonian) of the Ardmore Field, UK North Sea. Proc. Geol. Assoc. 129, 202–214 (2018). https://doi.org/10.1016/j.pgeola.2018.03.001

    Article  Google Scholar 

  5. Al-Masrahy, M.A.; Mountney, N.P.: A classification scheme for fluvial–aeolian system interaction in desert-margin settings. Aeol. Res. 17, 67–88 (2015). https://doi.org/10.1016/j.aeolia.2015.01.010

    Article  Google Scholar 

  6. Al-Masrahy, M.: Modelling temporal and spatial sedimentary architectural complexity in mixed aeolian-fluvial reservoir successions. In: Day 4 Thu, April 27, 2017. p. D043S033R004. SPE, Dammam, Saudi Arabia (2017)

  7. Al-Masrahy, M.: Significance of aeolian deposits resultant drift direction, implications for reservoir prediction, utilizing subsurface and analogue data. In: Day 2 Tue, January 14, 2020. p. D023S147R001. IPTC, Dhahran, Kingdom of Saudi Arabia (2020)

  8. Al-Ramadan, K.; Franks, S.G.; Al-Shammari, S.; Rees, A.; Koeshidayatullah, A.; Abu-Khamsin, S.: Depositional and diagenetic barriers, baffles and conduits: Permian—Carboniferous Unayzah Reservoir, Nuayyim Field, Central Saudi Arabia. J. Pet. Geol 40, 85–103 (2017). https://doi.org/10.1111/jpg.12665

    Article  Google Scholar 

  9. Weibel, R.; Olivarius, M.; Kjøller, C.; Kristensen, L.; Hjuler, M.L.; Friis, H.; Pedersen, P.K.; Boyce, A.; Andersen, M.S.; Kamla, E.; Boldreel, L.O.; Mathiesen, A.; Nielsen, L.H.: The influence of climate on early and burial diagenesis of Triassic and Jurassic sandstones from the Norwegian-Danish Basin. Depositional Record. 3, 60–91 (2017). https://doi.org/10.1002/dep2.27

    Article  Google Scholar 

  10. Alqubalee, A.; Abdullatif, O.; Babalola, L.; Makkawi, M.: Characteristics of Paleozoic tight gas sandstone reservoir: integration of lithofacies, paleoenvironments, and spectral gamma-ray analyses, Rub’ al Khali Basin, Saudi Arabia. Arab. J. Geosci. 12 (2019). https://doi.org/10.1007/s12517-019-4467-0

  11. Alqubalee, A.; Babalola, L.; Abdullatif, O.; Makkawi, M.: Factors controlling reservoir quality of a paleozoic tight sandstone, Rub’ al Khali Basin, Saudi Arabia. Arab. J. Sci. Eng. 44, 6489–6507 (2019). https://doi.org/10.1007/s13369-019-03885-9

    Article  Google Scholar 

  12. Bello, A.M.; Butt, M.N.; Hussain, A.; Amao, A.O.; Olariu, C.; Koeshidayatullah, A.I.; Malik, M.H.; Al-Hashem, M.; Al-Ramadan, K.: Impact of depositional and diagenetic controls on reservoir quality of syn-rift sedimentary systems: an example from Oligocene-Miocene Al Wajh Formation, Northwest Saudi Arabia. Sediment. Geol. 106342 (2023). https://doi.org/10.1016/j.sedgeo.2023.106342

  13. Al-Ramadan, K.; Morad, S.; Norton, A.K.; Hulver, M.: Linking diagenesis and porosity preservation versus destruction to sequence stratigraphy of gas condensate reservoir sandstones; the Jauf Formation (Lower to Middle Devonian), Eastern Saudi Arabia. Link. Diagen. Sequence Stratigr., pp 297–336 (2013). https://doi.org/10.1002/9781118485347.ch13

  14. Bello, A.M.; Jones, S.J.; Gluyas, J.; Al-Ramadan, K.: Impact of grain-coating clays on porosity preservation in paleocene turbidite channel sandstones: Nelson Oil Field UK Central North Sea. Minerals. 12, 555 (2022)

    Article  Google Scholar 

  15. Bello, A.M.; Usman, M.B.; Usman, A.; Al-Ramadan, K.; Babalola, L.O.; Amao, A.O.; Sarki Yandoka, B.M.; Kachalla, A.; Kwami, I.A.; Ismail, M.A.; Umar, U.S.; Kimayim, A.: Role of diagenetic alterations on porosity evolution in the cretaceous (Albian-Aptian) Bima Sandstone, a case study from the Northern Benue Trough NE Nigeria. Mar. Petrol. Geol. 145, 105851 (2022). https://doi.org/10.1016/j.marpetgeo.2022.105851

    Article  Google Scholar 

  16. Bello, A.M.; Jones, S.; Gluyas, J.; Acikalin, S.; Cartigny, M.: Role played by clay content in controlling reservoir quality of submarine fan system, Forties Sandstone Member, Central Graben, North Sea. Mar. Petrol. Geol. 128 (2021). https://doi.org/10.1016/j.marpetgeo.2021.105058

  17. Oluwadebi, A.G.; Taylor, K.G.; Dowey, P.J.: Diagenetic controls on the reservoir quality of the tight gas Collyhurst Sandstone Formation, Lower Permian, East Irish Sea Basin United Kingdom. Sediment. Geol. 371, 55–74 (2018). https://doi.org/10.1016/j.sedgeo.2018.04.006

    Article  Google Scholar 

  18. Rahman, M.J.J.; Worden, R.H.: Diagenesis and its impact on the reservoir quality of Miocene sandstones (Surma Group) from the Bengal Basin. Bangladesh. Mar. Petrol. Geol. 77, 898–915 (2016). https://doi.org/10.1016/j.marpetgeo.2016.07.027

    Article  Google Scholar 

  19. Fic, J.; Pedersen, P.K.: Reservoir characterization of a “tight” oil reservoir, the middle Jurassic Upper Shaunavon Member in the Whitemud and Eastbrook pools, SW Saskatchewan. Mar. Petrol. Geol. 44, 41–59 (2013). https://doi.org/10.1016/j.marpetgeo.2013.03.013

    Article  Google Scholar 

  20. Stroker, T.M.; Harris, N.B.; Crawford Elliott, W.; Marion Wampler, J.: Diagenesis of a tight gas sand reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin. Colorado. Mar. Petrol. Geol. 40, 48–68 (2013). https://doi.org/10.1016/j.marpetgeo.2012.08.003

    Article  Google Scholar 

  21. Xia, C.; Wilkinson, M.: The geological risks of exploring for a CO2 storage reservoir. Int. J. Greenhouse Gas Control 63, 272–280 (2017). https://doi.org/10.1016/j.ijggc.2017.05.016

    Article  Google Scholar 

  22. Bjørlykke, K.; Aagaard, P.; Egeberg, P.K.; Simmons, S.P.: Geochemical constraints from formation water analyses from the North Sea and the Gulf Coast Basins on quartz, feldspar and illite precipitation in reservoir rocks. In: Cubit, J.M., England, W.A. (ed.) Geological Society Special Publication. pp. 33–50. Spec. Publ. Geol. Soc. London (1995)

  23. Worden, R.H.; Morad, S.: Clay Minerals in sandstones: controls on formation, distribution and evolution. In: Clay Mineral Cements in Sandstones. pp. 1–41. Blackwell Publishing Ltd., Oxford, UK (2003)

  24. Bukar, M.: Does oil emplacement stop diagenesis and quartz cementation in deeply buried sandstone reservoirs. Doctor of Philosophy thesis, University of Liverpool (2013)

  25. Salisu, A.M.; Alqubalee, A.; Bello, A.M.; Al-Hussaini, A.; Adebayo, A.R.; Amao, A.O.; Al-Ramadan, K.: Impact of kaolinite and iron oxide cements on resistivity and quality of low resistivity pay sandstones. Mar. Petrol. Geol. 158 (2023). https://doi.org/10.1016/j.marpetgeo.2023.106568

  26. Bello, A.M.; Usman, M.B.; Ismail, M.A.; Mukkafa, S.; Abubakar, U.; Kwami, I.A.; Al-Ramadan, K.; Amao, A.O.; Al-Hashem, M.; Salisu, A.M.; Kachalla, A.; Abubakar, M.B.; Maigari, A.S.; Chiroma, L.U.: Linking diagenesis and reservoir quality to depositional facies in marginal to shallow marine sequence: an example from the Campano-Maastrichtian Gombe Sandstone, Northern Benue Trough, NE Nigeria. Mar. Petrol. Geol. 155 (2023). https://doi.org/10.1016/j.marpetgeo.2023.106386

  27. El-Ghali, M.A.K.; Shelukhina, O.; Abbasi, I.A.; Moustafa, M.S.H.; Hersi, O.S.; Siddiqui, N.A.; Al-Ramadan, K.; Alqubalee, A.; Bello, A.M.; Amao, A.O.: Depositional and sequence stratigraphic controls on diagenesis in the upper cambrian-lower ordovician Barik Formation, central Oman: Implications on prediction of reservoir porosity in a hybrid energy delta system. Mar. Petrol. Geol. 106611 (2023). https://doi.org/10.1016/j.marpetgeo.2023.106611

  28. Bahlis, A.B.; de Ros, L.F.: Origin and impact of authigenic chlorite in the Upper Cretaceous sandstone reservoirs of the Santos Basin, eastern Brazil. Pet. Geosci. 19, 185–199 (2013). https://doi.org/10.1144/petgeo2011-007

    Article  Google Scholar 

  29. Worden, R.H.; Griffiths, J.; Wooldridge, L.J.;Utley, J.E.P.; Lawan, A.Y.; Muhammed, D.D.; Simon, N.; Armitage, P.J.: Chlorite in sandstones. Earth-Sci. Rev. 103105 (2020). https://doi.org/10.1016/j.earscirev.2020.103105

  30. Wooldridge, L.J.; Worden, R.H.; Griffiths, J.; Utley, J.E.P.: Clay-coated sand grains in petroleum reservoirs: understanding their distribution via a modern analogue. J. Sediment. Res. 87, 338–352 (2017). https://doi.org/10.2110/jsr.2017.20

    Article  Google Scholar 

  31. Dowey, P.J.; Worden, R.H.; Utley, J.; Hodgson, D.M.: Sedimentary controls on modern sand grain coat formation. Sed. Geol. 353, 46–63 (2017). https://doi.org/10.1016/j.sedgeo.2017.03.001

    Article  Google Scholar 

  32. Al-Ramadan, K.; Morad, S.; Norton, A.K.; Hulver, M.: Linking diagenesis and porosity preservation versus destruction to sequence stratigraphy of gas condensate reservoir sandstones; the Jauf Formation (Lower to Middle Devonian), Eastern Saudi Arabia. In: Linking Diagenesis to Sequence Stratigraphy. pp. 297–336. Wiley-Blackwell, Chichester (2013)

  33. Anjos, S.M.C.; De Ros, L.F.; Silva, C.M.A.: Chlorite authigenesis and porosity preservation in the upper cretaceous marine sandstones of the Santos Basin, Offshore Eastern Brazil. In: Worden, R.H., Morad, S. (Eds.) Clay Mineral Cements in Sandstones, pp. 289–316. International Association of Sedimentologists Special Publications, Oxford (2003)

    Google Scholar 

  34. Heald, M.T.; Larese, R.E.: Influence of coatings on quartz cementation. SEPM J. Sediment. Res. 44, 1269–1274 (1974). https://doi.org/10.1306/212f6c94-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  35. Gould, K.; Pe-Piper, G.; Piper, D.J.W.: Relationship of diagenetic chlorite rims to depositional facies in Lower Cretaceous reservoir sandstones of the Scotian Basin. Sedimentology 57, 587–610 (2010). https://doi.org/10.1111/j.1365-3091.2009.01106.x

    Article  Google Scholar 

  36. Hansen, H.N.; Løvstad, K.; Lageat, G.; Clerc, S.; Jahren, J.: Chlorite coating patterns and reservoir quality in deep marine depositional systems—example from the Cretaceous Agat Formation, Northern North Sea, Norway. Basin Res. 33, 2725–2744 (2021). https://doi.org/10.1111/bre.12581

    Article  Google Scholar 

  37. Storvoll, V.; Bjørlykke, K.; Karlsen, D.; Saigal, G.: Porosity preservation in reservoir sandstones due to grain-coating illite: A study of the Jurassic Garn Formation from the Kristin and Lavrans fields, offshore Mid-Norway. Mar. Pet. Geol. 19, 767–781 (2002). https://doi.org/10.1016/S0264-8172(02)00035-1

    Article  Google Scholar 

  38. Ajdukiewicz, J.M.; Larese, R.E.: How clay grain coats inhibit quartz cement and preserve porosity in deeply buried sandstones: Observations and experiments. AAPG Bull. 96, 2091–2119 (2012). https://doi.org/10.1306/02211211075

    Article  Google Scholar 

  39. Pittman, E.D.; Larese, R.E.; Heald, M.T.: Clay coats: occurrence and relevance to preservation of porosity in sandstones. In: Housenknecht, D.W.; Pittman, E. (Eds.) Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, pp. 241–255. Special Publication, SEPM (1992)

    Chapter  Google Scholar 

  40. Al-Laboun, A.A.: Unayzah formation: a new Permo-Carboniferous unit in Saudi Arabia. AAPG Bull. 71, 29–38 (1987)

    Google Scholar 

  41. Konert, G.; Afifi, A.M.; Al-Hajri, S.A.; Droste, H.J.: Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate. GeoArabia. 6, 407–442 (2001). https://doi.org/10.2113/geoarabia0603407

    Article  Google Scholar 

  42. Melvin, J.; Wallick, B.P.; Heine, C.J.: Advances in Arabian stratigraphy: allostratigraphic layering related to paleo-water table fluctuations in eolian sandstones of the Permian Unayzah A reservoir, South Haradh, Saudi Arabia. GeoArabia. 15, 55–86 (2010). https://doi.org/10.2113/geoarabia150255

    Article  Google Scholar 

  43. Melvin, J.; Sprague, R.A.: Advances in Arabian stratigraphy: origin and stratigraphic architecture of glaciogenic sediments in Permian-Carboniferous lower Unayzah sandstones, eastern central Saudi Arabia. GeoArabia. 11, 105–152 (2006). https://doi.org/10.2113/geoarabia1104105

    Article  Google Scholar 

  44. Senalp, M.; Al-Duaiji, A.: Stratigraphy and sedimentation of the Unayzah Reservoir, Central Saudi Arabia. In: The Middle East Petroleum Geosciences. pp. 837–847. Gulf Petrolink, Bahrain (2001)

  45. Birkle, P.; Van Dijk, C.; Dasgupta, K.; Murphy, M.J.; Kharaka, Y.K.; Thordsen, J.J.; Bischoff, J.L.: Controls on illite cementation in Unayzah sandstones, Saudi Arabia: mineralogy, K-Ar dating, numerical modeling, and hydrothermal experiments. J. Sediment. Res. 89, 89–109 (2019). https://doi.org/10.2110/jsr.2018.71

    Article  Google Scholar 

  46. Franks, S.G.; Zwingmann, H.: Origin and timing of late diagenetic illite in the Permian-Carboniferous Unayzah sandstone reservoirs of Saudi Arabia. Bulletin 94, 1133–1159 (2010). https://doi.org/10.1306/04211009142

    Article  Google Scholar 

  47. McGillivray, J.G.; Hussein, M.I.: The Paleozoic Petroleum Geology of Central Arabia (1). Bulletin. 76 (1992). https://doi.org/10.1306/BDFF8A1A-1718-11D7-8645000102C1865D

  48. Aktas, G.; Cocker, J.D.: Diagenetic and depositional controls on reservoir quality in Khuff and Unayzah sandstones, Hawtah trend, central Saudi Arabia. In: Middle East Petroleum Geosciences. pp. 44–52. Gulf Petrolink, Bahrain (1995)

  49. Alaboud, F.; Melvin, J.: Sedimentological and Stratigraphic Characterization of Late Paleozoic Unayzah Reservoirs, Central Arabia, Saudi Arabia. In: Day 3 Wed, April 26, 2017. p. D033S017R003. SPE, Dammam, Saudi Arabia (2017)

  50. Melvin, J.; Sprague, R.A.; Heine, C.J.: From bergs to ergs: The late Paleozoic Gondwanan glaciation and its aftermath in Saudi Arabia. In: Late Paleozoic Glacial Events and Postglacial Transgressions in Gondwana. Geological Society of America (2010)

  51. Amao, A.O.; Al-Otaibi, B.; Al-Ramadan, K.: High-resolution X–ray diffraction datasets: carbonates. Data Brief 42, 108204 (2022). https://doi.org/10.1016/j.dib.2022.108204

    Article  Google Scholar 

  52. Dutton, S.P.; Hutton, M.E.; Ambrose, W.A.; Childers, A.T.; Loucks, R.G.: Preservation of reservoir quality by chlorite coats in deep Tuscaloosa Sandstones, Central Louisiana, USA. Gulf Coast Asso. Geol. Soc. 7, 46–58 (2018)

    Google Scholar 

  53. Folk, R.L.: Petrology of sedimentary rocks. Hemphill Publishing Company, Austin (1980)

    Google Scholar 

  54. Lundegard, P.D.: Sandstone porosity loss—a "big picture’ view of the importance of compaction. J. Sediment. Petrol. 62, 250–260 (1992). https://doi.org/10.1306/d42678d4-2b26-11d7-8648000102c1865d

    Article  Google Scholar 

  55. Dowey, P.J.; Hodgson, D.M.; Worden, R.H.: Pre-requisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs: A review of subsurface examples. Mar. Pet. Geol. 32, 63–75 (2012). https://doi.org/10.1016/j.marpetgeo.2011.11.007

    Article  Google Scholar 

  56. Luo, J.L.; Morad, S.; Salem, A.; Ketzer, J.M.; Lei, X.L.; Guo, D.Y.; Hlal, O.: Impact of diagenesis on reservoir-quality evolution in fluvial and lacustrine-deltaic sandstones: evidence from jurassic and triassic sandstones from the Ordos Basin, China. J. Petrol. Geol. 32, 79–102 (2009). https://doi.org/10.1111/j.1747-5457.2009.00436.x

    Article  Google Scholar 

  57. Matlack, K.S.; Houseknecht, D.W.; Applin, K.R.: Emplacement of clay into sand by infiltration. J. Sediment. Petrol. 59, 77–87 (1989). https://doi.org/10.1306/212F8F21-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  58. Kühn, P.; Aguilar, J.; Miedema, R.; Bronnikova, M.: Textural Pedofeatures and Related Horizons. In: Interpretation of Micromorphological Features of Soils and Regoliths. pp. 377–423. Elsevier, Amsterdam (2018)

  59. Moraes, M.A.S.; De Ros, L.F.: Depositional, infiltrated and Authigenic clays in fluvial sandstones of the Jurassic Sergiformation, Recôncavo Basin, Northeastern Brazil. In: Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones. pp. 197–208. Society of Economic Paleontologists and Mineralogists Special Publication (1992)

  60. Moraes, M.A.S.; De Ros, L.F.: Infiltrated clays in Fluvial Jurassic Sandstones of Reconcavo Basin, Northeastern Brazil. SEPM JSR. Vol. 60 (1990). https://doi.org/10.1306/212F928C-2B24-11D7-8648000102C1865D

  61. Fraser, H.J.: Experimental study of the porosity and permeability of clastic sediments. J. Geol. 43, 910–1010 (1935). https://doi.org/10.1086/624388

    Article  Google Scholar 

  62. Walderhaug, O.; Eliassen, A.; Aase, N.E.: Prediction of permeability in quartz-rich sandstones: examples from the Norwegian Continental Shelf and the Fontainebleau Sandstone. J. Sediment. Res. 82, 899–912 (2012). https://doi.org/10.2110/jsr.2012.79

    Article  Google Scholar 

  63. Bloch, S.; Lander, R.H.; Bonnell, L.: Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability. AAPG Bull. 86, 301–328 (2002). https://doi.org/10.1306/61eedabc-173e-11d7-8645000102c1865d

    Article  Google Scholar 

  64. Ajdukiewicz, J.M.; Nicholson, P.H.; Esch, W.L.: Prediction of deep reservoir quality using early diagenetic process models in the jurassic norphlet formation, gulf of Mexico. Am. Asso. Petrol. Geol. Bull. 94, 1189–1227 (2010). https://doi.org/10.1306/04211009152

    Article  Google Scholar 

  65. Al-Ramadan, K.: Illitization of Smectite in sandstones: the Permian Unayzah Reservoir, Saudi Arabia. Arab. J. Sci. Eng. 39, 407–412 (2014). https://doi.org/10.1007/s13369-013-0913-6

    Article  Google Scholar 

  66. Al-Ramadan, K.A.; Hussain, M.; Imam, B.; Saner, S.: Lithologic characteristics and diagenesis of the Devonian Jauf sandstone at Ghawar Field, Eastern Saudi Arabia. Mar. Pet. Geol. 21, 1221–1234 (2004). https://doi.org/10.1016/j.marpetgeo.2004.09.002

    Article  Google Scholar 

  67. Barshep, D.V.; Worden, R.H.: Reservoir quality of upper jurassic corallian sandstones, weald basin, UK. Geosciences (Switzerland). 11 (2021). https://doi.org/10.3390/geosciences11110446

  68. Bello, A.M.; Charlaftis, D.; Jones, S.J.; Gluyas, J.; Acikalin, S.; Cartigny, M.; Al-Ramadan, K.: Experimental diagenesis using present-day submarine turbidite sands. Front. Earth Sci. 10, 952690 (2022). https://doi.org/10.3389/feart.2022.952690

    Article  Google Scholar 

  69. Al-Husseini, M.: Update to Late Triassic-Jurassic stratigraphy of Saudi Arabia for the Middle East geologic time scale. GeoArabia. 14, 145–186 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are immensely grateful to Mr. Habeeb A. Al-Abbas and Mr. Bandar D. Al-Otaibi for their assistance in preparing thin sections and running the XRD analysis, respectively. We are equally grateful to Saudi Aramco for granting approval to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdulwahab Muhammad Bello, Abdullah Alqubalee, Khalid Al-Ramadan or Lamidi Babalola.

Ethics declarations

Conflict of interest

The authors would like to declare that they have no competing interests whatsoever that might have impacted the findings of the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bello, A.M., Amao, A., Alqubalee, A. et al. Diagenetic Controls on Reservoir Porosity of Aeolian and Fluvial Deposits: A Case Study from Permo-Carboniferous Sandstones of Saudi Arabia. Arab J Sci Eng 49, 973–993 (2024). https://doi.org/10.1007/s13369-023-08590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08590-2

Keywords

Navigation