Skip to main content
Log in

Proof of Concept of the Regeneration Part in a Novel Desiccant-Based Atmospheric Water Generator

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Earth atmosphere holds a vast amount of water that can be considered a reliable freshwater resource. The desiccant-based atmospheric water generator comprises a basic humidification–dehumidification (HDH) system that uses a liquid desiccant solution instead of saline water and a desiccant-based air dryer. This paper focuses on the regeneration part of the desiccant-based atmospheric water generator. An experimental study is conducted on this part, which is a desiccant (lithium bromide)-heated open-air HDH cycle with brine recirculation. The system is designed and implemented in a controlled setting to investigate the effect of various system operating parameters, including desiccant-to-air mass flowrate ratio, cooling water mass flowrate, desiccant temperature, and cooling water temperature on the system performance indices. Performance is assessed based on the system freshwater recovery ratio, gain output ratio (GOR), and freshwater productivity. This study presents an innovative method by integrating humidification–dehumidification as the regeneration process within the atmospheric water generator to showcase its practicality. Results indicate an optimum desiccant-to-air mass flowrate ratio at which maximizes the system recovery ratio, productivity, and gain output ratio (GOR). Higher desiccant-to-air mass flowrate ratio and top (heating) temperatures lead to increased freshwater production rate, GOR, and freshwater recovery ratio. Lower bottom (cooling water) temperatures and higher cooling water flowrate enhance the system's performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

DH:

Desiccant-heated

GOR:

Gain output ratio

HDH:

Humidification–dehumidification

HME:

Heat and mass exchange

MED:

Multiple effect desalination

MENA:

Middle East and North Africa

PVC:

Polyvinyl chloride

h fg :

Latent heat of vaporization (kJ kg1)

\(\dot{m}\) :

Mass flowrate (kg s1)

MR:

Mass flowrate ratio for desiccant to air

n :

Number

\(\dot{Q}\) :

Rate of heat input (kW)

R:

Result

RR:

Recovery ratio (%)

t :

Time (s)

T :

Temperature (°C)

T cold :

Cooling water operating temperature—bottom temperature

T hot :

Hot desiccant temperature—top temperature

x :

Independent variable

\(\delta\) :

Uncertainty or variation

∂:

Partial derivative

a :

Air

ch:

Chiller

cw:

Cooling water

d :

Dry

db:

Dry-bulb

deh:

Dehumidifier

est:

Estimated

exp:

Experimental

fp:

Freshwater production

hum:

Humidifier

ht:

Heater

in:

Inlet

out:

Outlet

R :

Results

s :

Desiccant

tank:

Desiccant tank

wb:

Wet-bulb

References

  1. Alirahmi, S.M.; Mousavi, S.B.; Razmi, A.R.; Ahmadi, P.: A comprehensive techno-economic analysis and multi-criteria optimization of a compressed air energy storage (CAES) hybridized with solar and desalination units. Energy Convers. Manag. 236, 114053 (2021). https://doi.org/10.1016/j.enconman.2021.114053

    Article  Google Scholar 

  2. Ziyaei, M.; Jalili, M.; Chitsaz, A.; Nazari, M.A.: Dynamic simulation and life cycle cost analysis of a MSF desalination system driven by solar parabolic trough collectors using TRNSYS software: a comparative study in different world regions. Energy Convers. Manag. 243, 114412 (2021). https://doi.org/10.1016/j.enconman.2021.114412

    Article  Google Scholar 

  3. Tlili, I.; Alkanhal, T.A.; Othman, M.; Dara, R.N.; Shafee, A.: Water management and desalination in KSA view 2030: case study of solar humidification and dehumidification system. J. Therm. Anal. Calorim. 139, 3745–3756 (2020). https://doi.org/10.1007/s10973-019-08700-z

    Article  CAS  Google Scholar 

  4. Zhang, Y.; Palomba, V.; Frazzica, A.: Understanding the effect of materials, design criteria and operational parameters on the adsorption desalination performance—a review. Energy Convers. Manag. 269, 116072 (2022). https://doi.org/10.1016/j.enconman.2022.116072

    Article  CAS  Google Scholar 

  5. Liang, Y.; Xu, J.; Luo, X.; Chen, J.; Yang, Z.; Chen, Y.: Cradle-to-grave life cycle assessment of membrane distillation systems for sustainable seawater desalination. Energy Convers. Manag. 266, 115740 (2022). https://doi.org/10.1016/j.enconman.2022.115740

    Article  CAS  Google Scholar 

  6. Liu, T.K.; Ye, J.-A.; Sheu, H.-Y.: Exploring the social acceptability for the desalination plant project: perceptions from the stakeholders. Desalination 532, 115757 (2022). https://doi.org/10.1016/j.desal.2022.115757

    Article  CAS  Google Scholar 

  7. Pistocchi, A.; Bleninger, T.; Breyer, C.; Caldera, U.; Dorati, C.; Ganora, D., et al.: Can seawater desalination be a win–win fix to our water cycle? Water Res. 182, 115906 (2020). https://doi.org/10.1016/j.watres.2020.115906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, W.; Shi, Y.; Zhang, C.; Hong, S.; Shi, L.; Chang, J., et al.: Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10, 3012 (2019). https://doi.org/10.1038/s41467-019-10817-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Elhashimi, M.A.; Gee, M.; Abbasi, B.: Unconventional desalination: the use of cyclone separators in HDH desalination to achieve zero liquid discharge. Desalination 539, 115932 (2022). https://doi.org/10.1016/j.desal.2022.115932

    Article  CAS  Google Scholar 

  10. Shalaby, S.M.; Sharshir, S.W.; Kabeel, A.E.; Kandeal, A.W.; Abosheiasha, H.F.; Abdelgaied, M., et al.: Reverse osmosis desalination systems powered by solar energy: preheating techniques and brine disposal challenges—a detailed review. Energy Convers. Manag. 251, 114971 (2022). https://doi.org/10.1016/j.enconman.2021.114971

    Article  CAS  Google Scholar 

  11. Mohammed, R.H.; Ibrahim, M.M.; Abu-Heiba, A.: Exergoeconomic and multi-objective optimization analyses of an organic Rankine cycle integrated with multi-effect desalination for electricity, cooling, heating power, and freshwater production. Energy Convers. Manag. 231, 113826 (2021). https://doi.org/10.1016/j.enconman.2021.113826

    Article  Google Scholar 

  12. Elbassoussi, M.H.; Mohammed, R.H.; Zubair, S.M.: Thermoeconomic assessment of an adsorption cooling/desalination cycle coupled with a water-heated humidification-dehumidification desalination unit. Energy Convers. Manag. 223, 113270 (2020). https://doi.org/10.1016/j.enconman.2020.113270

    Article  Google Scholar 

  13. Elbassoussi, M.H.; Antar, M.A.; Zubair, S.M.: Hybridization of a triple-effect absorption heat pump with a humidification-dehumidification desalination unit: thermodynamic and economic investigation. Energy Convers. Manag. 233, 113879 (2021). https://doi.org/10.1016/j.enconman.2021.113879

    Article  CAS  Google Scholar 

  14. Lienhard, J.; Antar, M.A.; Bilton, A.; Blanco, J.; Zaragoza, G.: Solar desalination. Annu. Rev. Heat Transf. 15, 277–347 (2012). https://doi.org/10.1615/AnnualRevHeatTransfer.2012004659

    Article  Google Scholar 

  15. Sharqawy, M.H.; Antar, M.A.; Zubair, S.M.; Elbashir, A.M.: Optimum thermal design of humidification dehumidification desalination systems. Desalination 349, 10–21 (2014). https://doi.org/10.1016/j.desal.2014.06.016

    Article  CAS  Google Scholar 

  16. Saeed, A.; Antar, M.A.; Sharqawy, M.H.; Badr, H.M.: CFD modeling of humidification dehumidification distillation process. Desalination 395, 46–56 (2016). https://doi.org/10.1016/j.desal.2016.03.011

    Article  CAS  Google Scholar 

  17. Zubair, M.I.; Al-Sulaiman, F.A.; Antar, M.A.; Al-Dini, S.A.; Ibrahim, N.I.: Performance and cost assessment of solar driven humidification dehumidification desalination system. Energy Convers. Manag. 132, 28–39 (2017). https://doi.org/10.1016/j.enconman.2016.10.005

    Article  Google Scholar 

  18. Narayan, G.P.; Chehayeb, K.M.; McGovern, R.K.; Thiel, G.P.; Zubair, S.M.; Lienhard, V.J.H.: Thermodynamic balancing of the humidification dehumidification desalination system by mass extraction and injection. Int. J. Heat Mass Transf. 57, 756–770 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.068

    Article  Google Scholar 

  19. McGovern, R.K.; Thiel, G.P.; Narayan, G.P.; Zubair, S.M.; Lienhard, V.J.H.: Performance limits of zero and single extraction humidification-dehumidification desalination systems. Appl. Energy 102, 1081–1090 (2013). https://doi.org/10.1016/j.apenergy.2012.06.025

    Article  ADS  Google Scholar 

  20. Xu, H.; Jiang, S.; Xie, M.X.; Jia, T.; Dai, Y.J.: Technical improvements and perspectives on humidification-dehumidification desalination—a review. Desalination 541, 116029 (2022). https://doi.org/10.1016/j.desal.2022.116029

    Article  CAS  Google Scholar 

  21. Ahmed, M.A.; Qasem, N.A.A.; Zubair, S.M.; Gandhidasan, P.; Bahaidarah, H.M.: Thermodynamic balancing of the regeneration process in a novel liquid desiccant cooling/desalination system. Energy Convers. Manag. 176, 86–98 (2018). https://doi.org/10.1016/j.enconman.2018.09.012

    Article  CAS  Google Scholar 

  22. Qasem, N.A.A.; Zubair, S.M.: Performance evaluation of a novel hybrid humidification-dehumidification (air-heated) system with an adsorption desalination system. Desalination 461, 37–54 (2019). https://doi.org/10.1016/j.desal.2019.03.011

    Article  CAS  Google Scholar 

  23. Lawal, D.; Antar, M.; Khalifa, A.; Zubair, S.; Al-Sulaiman, F.: Humidification-dehumidification desalination system operated by a heat pump. Energy Convers. Manag. 161, 128–140 (2018). https://doi.org/10.1016/j.enconman.2018.01.067

    Article  Google Scholar 

  24. Santosh, R.; Yoo, C.H.; Kim, Y.-D.: Performance evaluation and optimization of humidification–dehumidification desalination system for low-grade waste heat energy applications. Desalination 526, 115516 (2022). https://doi.org/10.1016/j.desal.2021.115516

    Article  CAS  Google Scholar 

  25. Negharchi, S.M.; Najafi, A.; Nejad, A.A.; Ghadimi, N.: Determination of the optimal model for solar humidification dehumidification desalination cycle with extraction and injection. Desalination 506, 114984 (2021). https://doi.org/10.1016/j.desal.2021.114984

    Article  CAS  Google Scholar 

  26. Zubair, S.M.; Antar, M.A.; Elmutasim, S.M.; Lawal, D.U.: Performance evaluation of humidification-dehumidification (HDH) desalination systems with and without heat recovery options: an experimental and theoretical investigation. Desalination 436, 161–175 (2018). https://doi.org/10.1016/j.desal.2018.02.018

    Article  CAS  Google Scholar 

  27. Ghalavand, A.; Hatamipour, M.S.; Ghalavand, Y.: Performance evaluation of a multi-stage humidification compression with heat recovery based on mathematical modeling. Desalination 515, 115189 (2021). https://doi.org/10.1016/j.desal.2021.115189

    Article  CAS  Google Scholar 

  28. Narayan, G.P.; John, M.G.; Zubair, S.M.; V JHL,: Thermal design of the humidification dehumidification desalination system: an experimental investigation. Int. J. Heat Mass Transf. 58, 740–748 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.035

    Article  CAS  Google Scholar 

  29. Sharqawy, M.H.; Al-Shalawi, I.; Antar, M.A.; Zubair, S.M.: Experimental investigation of packed-bed cross-flow humidifier. Appl. Therm. Eng. 117, 584–590 (2017). https://doi.org/10.1016/j.applthermaleng.2017.02.061

    Article  Google Scholar 

  30. Aburub, A.J.; Aliyu, M.; Lawal, D.; Antar, M.A.: Experimental investigations of a cross-flow humidification dehumidification desalination system. Int. Water Technol. J. 7, 198–208 (2017)

    Google Scholar 

  31. Aburub, A.J.; Aliyu, M.; Lawal, D.; Antar, M.A.: Experimental investigations of the performance of a cross-flow humidification-dehumidification desalination system. In: 20th Int. Water Technol. Conf. IWTC20, Hurghada (2017)

  32. Yamalı, C.; Solmus, İ: A solar desalination system using humidification–dehumidification process: experimental study and comparison with the theoretical results. Desalination 220, 538–551 (2008). https://doi.org/10.1016/j.desal.2007.01.054

    Article  CAS  Google Scholar 

  33. Al-Sulaiman, F.A.; Abd-Ur-Rehman, H.M.; Antar, M.A.; Munteshari, O.: Experimental investigation of a bubble column humidifier heated through solar energy. Desalin. Water Treat. 60, 58–69 (2017). https://doi.org/10.5004/dwt.2017.0086

    Article  Google Scholar 

  34. Ahmed, M.A.; Zubair, S.M.; Abido, M.A.; Bahaidarah, H.M.: An innovative closed-air closed-desiccant HDH system to extract water from the air: a case for zero-brine discharge system. Desalination 445, 236–248 (2018). https://doi.org/10.1016/j.desal.2018.07.024

    Article  CAS  Google Scholar 

  35. Modi, K.V.; Shukla, D.L.: Regeneration of liquid desiccant for solar air-conditioning and desalination using hybrid solar still. Energy Convers. Manag. 171, 1598–1616 (2018). https://doi.org/10.1016/j.enconman.2018.06.096

    Article  CAS  Google Scholar 

  36. Su, B.; Han, W.; Jin, H.: An innovative solar-powered absorption refrigeration system combined with liquid desiccant dehumidification for cooling and water. Energy Convers. Manag. 153, 515–525 (2017). https://doi.org/10.1016/j.enconman.2017.10.028

    Article  Google Scholar 

  37. Kabeel, A.E.; Abdelgaied, M.; Zakaria, Y.: Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system. Energy Convers. Manag. 150, 382–391 (2017). https://doi.org/10.1016/j.enconman.2017.08.032

    Article  Google Scholar 

  38. Exposed Junction Wire Thermocouples. https://ratemperaturesensors.co.uk/pfa-flat-pair--exposed-junction-wire-thermocouple-250c-1427-p.asp. Accessed 11 Oct 2023.

  39. In-line Flow meters. https://sea.omega.com/tw/pptst/FL46300.html. Accessed 11 Oct 2023

  40. SMART SENSOR AR836 DIGITAL ANEMOMETER. https://ronexintl.wordpress.com/2019/10/27/smart-sensor-ar836-digital-anemometer-in-bangladesh/. Accessed 11 Oct 2023

  41. Holman, J.P.: Experimental Methods of Engineering. McGraw-Hill Book Company, New York (1971)

    Google Scholar 

  42. Kline, S.J.; McClintock, F.A.: Describing uncertainties in single sample experiments. Mech. Eng. 75, 3–8 (1953)

    Google Scholar 

  43. Lawal, D.U.; Antar, M.A.; Khalifa, A.; Zubair, S.M.; Al-Sulaiman, F.: Experımental investigation of heat pump driven humidification-dehumidification desalination system for water desalination and space conditioning. Desalination 475, 114199 (2020). https://doi.org/10.1016/j.desal.2019.114199

    Article  CAS  Google Scholar 

  44. Liu, J.; Ren, H.; Hai, F.I.; Albdoor, A.K.; Ma, Z.: Direct contact membrane distillation for liquid desiccant regeneration and fresh water production: experimental investigation, response surface modeling and optimization. Appl. Therm. Eng. 184, 116293 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116293

    Article  CAS  Google Scholar 

  45. Zhou, J.; Wang, F.; Noor, N.; Zhang, X.: An experimental study on liquid regeneration process of a liquid desiccant air conditioning system (LDACs) based on vacuum membrane distillation. Energy 194, 116891 (2020). https://doi.org/10.1016/j.energy.2019.116891

    Article  CAS  Google Scholar 

  46. Audah, N.; Ghaddar, N.; Ghali, K.: Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs. Appl. Energy 88, 3726–3736 (2011). https://doi.org/10.1016/j.apenergy.2011.04.028

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by King Fahd University of Petroleum & Minerals through the project DUP20101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Zubair.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.A.M., Shamet, O., Lawal, D.U. et al. Proof of Concept of the Regeneration Part in a Novel Desiccant-Based Atmospheric Water Generator. Arab J Sci Eng 49, 2813–2829 (2024). https://doi.org/10.1007/s13369-023-08512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08512-2

Keywords

Navigation