Skip to main content
Log in

Development of Photochromic Authentication Patterns Using Self-Healable Sodium Alginate Hydrogel: Optical Strategy Toward Confidential Information Encryption

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Photochromic pattern with dual-mode fluorescence authentication was developed using a new self-healable nanocomposite hydrogel. A hybrid hydrogel of tricarboxy cellulose (TCC), sodium alginate (SA) and polyvinyl alcohol (PVA) was admixed with rare-earth doped aluminate (REA) nanoparticles (NPs) to produce inorganic–organic nanocomposite inks. The freezing and thawing procedures were used to prepare the TCC/SA/PVA composite hydrogel. TCC containing carboxylic substituents per anhydroglucose moiety was synthesized using one-pot oxidation technique, and PVA was dissolved in TCC aqueous solutions. To create transparent photochromic paper surface that changes color to green under UV illumination, a homogeneous film of REA@TCC/SA/PVA was imprinted directly onto paper surface. The luminous prints had a fluorescence peak at 519 nm once stimulated at 370 nm. The particles of the synthesized lanthanide-doped aluminate were measured to be between 9 and 33 nm in size using transmission electron microscope (TEM). X-ray powder diffraction was also employed to examine the structure of lanthanide-doped strontium aluminate. The morphological characteristics of stamped sheets were determined by a variety of analysis methods. The printed sheets displayed non-fatiguing reversible photochromism. The cytotoxicity of the prepared photoluminescent hydrogels was investigated. The mechanical performance of prints and hydrogel rheological properties were investigated. The prepared REA@TCC/SA/PVA hydrogel provides an efficient technique for a variety of authentications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and available from the corresponding author upon request.

References

  1. Muthamma, K.; Sunil, D.; Shetty, P.: Carbon dots as emerging luminophores in security inks for anti-counterfeit applications-an up-to-date review. Appl. Mater. Today 23, 101050 (2021)

    Google Scholar 

  2. Wang, X.; Wang, L.; Mao, X.; Wang, Q.; Mu, Z.; An, L.; Zhang, W.; Feng, X.; Redshaw, C.; Cao, C.; Qin, A.: Pyrene-based aggregation-induced emission luminogens (AIEgens) with less colour migration for anti-counterfeiting applications. J. Mater. Chem. C 9, 12828–12838 (2021)

    Google Scholar 

  3. Luo, Z.; Liu, Y.; Liu, Y.; Li, C.; Li, Y.; Li, Q.; Wei, Y.; Zhang, L.; Xu, B.; Chang, X.; Quan, Z.: Integrated afterglow and self-trapped exciton emissions in hybrid metal halides for anti-counterfeiting applications. Adv. Mater. 34, 2200607 (2022)

    Google Scholar 

  4. Wu, Y.; Zhao, X.; Zhang, Z.; Xiang, J.; Suo, H.; Guo, C.: Dual-mode dichromatic SrBi4Ti4O15: Er3+ emitting phosphor for anti-counterfeiting application. Ceram. Int. 47, 15067–15072 (2021)

    Google Scholar 

  5. Deng, Z.; Li, L.; Tang, P.; Jiao, C.; Yu, Z.-Z.; Koo, C.M.; Zhang, H.-B.: Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16, 16976–16986 (2022)

    Google Scholar 

  6. Ma, T.; Li, T.; Zhou, L.; Ma, X.; Yin, J.; Jiang, X.: Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 11, 1811 (2020)

    Google Scholar 

  7. Zhang, Y.; Yang, H.; Ma, H.; Bian, G.; Zang, Q.; Sun, J.; Zhang, C.; An, Z.; Wong, W.-Y.: Excitation wavelength dependent fluorescence of an ESIPT triazole derivative for amine sensing and anti-counterfeiting applications. Angew. Chem. Int. Ed. 58, 8773–8778 (2019)

    Google Scholar 

  8. Liu, L.; Shi, J.; Li, Y.; Peng, S.; Zhong, H.; Song, L.; Zhang, Y.: Disguise as fluorescent powder: ultraviolet-B persistent luminescence material without visible light for advanced information encryption and anti-counterfeiting applications. Chem. Eng. J. 430, 132884 (2022)

    Google Scholar 

  9. Long, Z.; Wen, Y.; Zhou, J.; Qiu, J.; Wu, H.; Xu, X.; Yu, X.; Zhou, D.; Yu, J.; Wang, Q.: No-interference reading for optical information storage and ultra-multiple anti-counterfeiting applications by designing targeted recombination in charge carrier trapping phosphors. Adv. Opt. Mater. 7, 1900006 (2019)

    Google Scholar 

  10. Lei, D.; Shao, L.; Xi, M.; Jiang, Y.; Li, Y.: Dual-stimuli-responsive and anti-freezing conductive ionic hydrogels for smart wearable devices and optical display devices. ACS Appl. Mater. Interfaces 15, 24175–24185 (2023)

    Google Scholar 

  11. Fu, X.; Li, G.; Cai, S.; Yang, H.; Lin, K.; He, M.; Wen, J.; Li, H.; Xiong, Y.; Chen, D.; Liu, X.: Color-switchable hybrid dots/hydroxyethyl cellulose ink for anti-counterfeiting applications. Carbohydr. Polym. 251, 117084 (2021)

    Google Scholar 

  12. Abumelha, H.M.; Alharbi, H.; Abualnaja, M.M.; Alsharief, H.H.; Ashour, G.R.S.; Saad, F.A.; El-Metwaly, N.M.: Preparation of fluorescent ink using perylene-encapsulated silica nanoparticles toward authentication of documents. J. Photochem. Photobiol. A: Chem. 441, 114706 (2023)

    Google Scholar 

  13. Yu, C.-M.; Wang, P.-H.; Liu, Q.; Cai, L.-Z.; Guo, G.-C.: Modulating fading time of photochromic compounds by molecular design for erasable inkless printing and anti-counterfeiting. Cryst. Growth Des. 21, 1323–1328 (2021)

    Google Scholar 

  14. Wei, T.; Jia, B.; Shen, L.; Zhao, C.; Wu, L.; Zhang, B.; Tao, X.; Wu, S.; Liang, Y.: Reversible upconversion modulation in new photochromic SrBi2Nb2O9 based ceramics for optical storage and anti-counterfeiting applications. J. Eur. Ceram. Soc. 40, 4153–4163 (2020)

    Google Scholar 

  15. Fang, X.; Lu, Y.; Chen, X.; Cheng, H.; Qiu, H.; Zheng, Y.; Zhu, J.: Carbon nitride nanosheet-based photochromic physical unclonable functions for anticounterfeiting applications. ACS Appl. Nano Mater. 5, 14722–14732 (2022)

    Google Scholar 

  16. Ibarhiam, S.F.; Alshareef, H.F.; Alqarni, S.A.; Shah, R.; Al-Qahtani, S.D.; Almehmadi, S.J.; El-Metwaly, N.M.: Novel nanocomposite film developed via screen-printing of viologen polymer for anti-counterfeiting applications: Photochromism, thermochromism and vapochromic. React. Funct. Polym. 172, 105186 (2022)

    Google Scholar 

  17. Haider, A.A.; Cun, Y.; Bai, X.; Xu, Z.; Zi, Y.; Qiu, J.; Song, Z.; Huang, A.; Yang, Z.: Anti-counterfeiting applications by photochromism induced modulation of reversible upconversion luminescence in TiO2: Yb3+, Er3+ ceramic. J. Mater. Chem. C 10, 6243–6251 (2022)

    Google Scholar 

  18. Alidaei-Sharif, H.; Roghani-Mamaqani, H.; Babazadeh-Mamaqani, M.; Sahandi-Zangabad, K.; Abdollahi, A.; Salami-Kalajahi, M.: Photochromic polymer nanoparticles as highly efficient anticounterfeiting nanoinks for development of photo-switchable encoded tags. J. Photochem. Photobiol. A: Chem. 436, 114343 (2023)

    Google Scholar 

  19. Zhang, H.; Wang, Y.; Jiao, Y.; Chen, S.; Liao, M.; Fang, Y.; Gao, W.; Hu, L.: Excitation-wavelength-dependent photochromic Bi3+/Ln3+ (Eu3+, Er3+)-codoped phosphors for anticounterfeiting applications. Ceram. Int. 49, 17894–17903 (2023)

    Google Scholar 

  20. Gao, H.; Liu, G.; Cui, C.; Wang, M.; Gao, J.: Preparation and properties of a polyurethane film based on novel photochromic spirooxazine chain extension. New J. Chem. 46, 9128–9137 (2022)

    Google Scholar 

  21. Wang, K.-X.; Yin, B.-W.; Jia, P.-K.; Zhang, T.-S.; Cui, G.; Xie, B.-B.: Electronic structure calculations and nonadiabatic dynamics simulations on reversible photochromic mechanism of spirooxazine. Dyes Pigm. 205, 110509 (2022)

    Google Scholar 

  22. Cai, G.; Shi, M.; Gao, J.; Yuan, L.: Preparation and photochromic properties of waterborne polyurethane containing spirooxazine groups. J. Appl. Polym. Sci. 136, 47067 (2019)

    Google Scholar 

  23. Abou-Melha, K.: Preparation of photoluminescent nanocomposite ink toward dual-mode secure anti-counterfeiting stamps. Arab. J. Chem. 15, 103604 (2022)

    Google Scholar 

  24. Abumelha, H.M.: Simple production of photoluminescent polyester coating using lanthanide-doped pigment. Luminescence 36, 1024–1031 (2021)

    Google Scholar 

  25. Delgado, T.; Afshani, J.; Hagemann, H.: Spectroscopic study of a single crystal of SrAl2O4: Eu2+: Dy3+. J. Phys. Chem. C 123, 8607–8613 (2019)

    Google Scholar 

  26. Zhang, M.; Li, F.; Lin, Y.; Li, Y.; Shen, Y.: Enhanced afterglow performance of CaAl2O4: Eu2+, Nd3+ phosphors by co-doping Gd3+. J. Rare Earths 39, 930–937 (2021)

    Google Scholar 

  27. Yegane, A.; Khalili, H.; Talebi, Z.: Synthesis of engineered silica aerogel containing SrAl2O4: Eu2+, Dy3+ to improve luminescence efficiency, thermal and water stability and optical properties. J. Non-Cryst. Solids 585, 121521 (2022)

    Google Scholar 

  28. Zhou, C.; Zhan, P.; Zhao, J.; Tang, X.; Liu, W.; Jin, M.; Wang, X.: Long-lasting CaAl2O4: Eu2+, Nd3+ phosphor-coupled g-C3N4 QDs composites for the round-the-clock photocatalytic methyl orange degradation. Ceram. Int. 46, 27884–27891 (2020)

    Google Scholar 

  29. Jia, D.: An enhanced long-persistent red phosphor: CaS: Eu2+, Tm3+, Ce3+. ECS Trans. 2, 1 (2007)

    Google Scholar 

  30. Mokhtar, O.M.; Attia, Y.A.; Wassel, A.R.; Khattab, T.A.: Production of photochromic nanocomposite film via spray-coating of rare-earth strontium aluminate for anti-counterfeit applications. Luminescence 36, 1933–1944 (2021)

    Google Scholar 

  31. El-Newehy, M.H.; Kim, H.Y.; Khattab, T.A.; El-Naggar, M.E.: Development of highly photoluminescent electrospun nanofibers for dual-mode secure authentication. Ceram. Int. 48, 3495–3503 (2022)

    Google Scholar 

  32. Alenazi, D.A.K.; AlSalem, H.S.; Alhawiti, A.S.; Binkadem, M.S.; Bukhari, A.A.H.; Alhadhrami, N.A.; Alatawi, R.A.S.; Abomuti, M.A.: Development of strontium aluminate embedded photochromic cellulose hydrogel for mapping of fingermarks. Inorg. Chem. Commun. 152, 110669 (2023)

    Google Scholar 

  33. Khalid, M.Y.; Arif, Z.U.; Sheikh, M.F.; Nasir, M.A.: Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. Int. J. Mater. Form. 14, 1085–1095 (2021)

    Google Scholar 

  34. Kayani, A.B.A.; Kuriakose, S.; Monshipouri, M.; Abdul Khalid, F.; Walia, S.; Sriram, S.; Bhaskaran, M.: UV photochromism in transition metal oxides and hybrid materials. Small 17, 2100621 (2021)

    Google Scholar 

  35. Huang, H.; Feng, Y.; Yang, X.; Shen, Y.: Natural gum-based electronic ink with water-proofing self-healing and easy-cleaning properties for directly on-skin electronics. Biosens. and Bioelectron. 214, 114547 (2022)

    Google Scholar 

  36. Verma, A.; Thakur, S.; Mamba, G.; Gupta, R.K.; Thakur, P.; Thakur, V.K.: Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Boil. Macromol. 148, 1130–1139 (2020)

    Google Scholar 

  37. Bhamore, J.R.; Park, T.J.; Kailasa, S.K.: Glutathione-capped Syzygium cumini carbon dot-amalgamated agarose hydrogel film for naked-eye detection of heavy metal ions. J. Anal. Sci. Technol. 11, 1–9 (2020)

    Google Scholar 

  38. Kailasa, S.K.; Joshi, D.J.; Kateshiya, M.R.; Koduru, J.R.; Malek, N.I.: Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem. 23, 100746 (2022)

    Google Scholar 

  39. Gao, M.; Li, J.; Xia, D.; Jiang, L.; Peng, N.; Zhao, S.; Li, G.: Lanthanides-based security inks with reversible luminescent switching and self-healing properties for advanced anti-counterfeiting. J. Mol. Liq. 350, 118559 (2022)

    Google Scholar 

  40. Garrigue, P.; Delville, M.-H.; Labrugère, C.; Cloutet, E.; Kulesza, P.J.; Morand, J.P.; Kuhn, A.: Top−down approach for the preparation of colloidal carbon nanoparticles. Chem. Mater. 16, 2984–2986 (2004)

    Google Scholar 

  41. Al-Qahtani, S.; Aljuhani, E.; Felaly, R.; Alkhamis, K.; Alkabli, J.; Munshi, A.; El-Metwaly, N.: Development of photoluminescent translucent wood toward photochromic smart window applications. Ind. Eng. Chem. Res. 60, 8340–8350 (2021)

    Google Scholar 

  42. Abdu, M.T.; Khattab, T.A.; Abdelrahman, M.S.: Development of photoluminescent and photochromic polyester nanocomposite reinforced with electrospun glass nanofibers. Polymers 15, 761 (2023)

    Google Scholar 

  43. Mogharbel, A.T.; Hameed, A.; Sayqal, A.A.; Katouah, H.A.; Al-Qahtani, S.D.; Saad, F.A.; El-Metwaly, N.M.: Preparation of carbon dots-embedded fluorescent carboxymethyl cellulose hydrogel for anticounterfeiting applications. Int. J. Biol. Macromol. 238, 124028 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small group Research Project under grant number: RGP1/139/44

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aisha Hossan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossan, A., Al nami, S.Y. Development of Photochromic Authentication Patterns Using Self-Healable Sodium Alginate Hydrogel: Optical Strategy Toward Confidential Information Encryption. Arab J Sci Eng 49, 787–800 (2024). https://doi.org/10.1007/s13369-023-08488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08488-z

Keywords

Navigation