Skip to main content
Log in

Flexural Behavior of Concrete Hollow-Core Beams Reinforced with GFRP Bars: Experimental and Analytical Investigation

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study investigated the flexural behavior of hollow concrete beams reinforced with GFRP bars with longitudinal openings of different sizes and shapes. A total of seven beams were tested, including two solid GFRP-RC beams, four hollow GFRP-RC beams with longitudinal holes accounting for between 6 and 15% of the total cross-sectional area, and one hollow conventional steel-RC beam with a longitudinal hole of 9% of the total area. The beams were tested in flexure, and the results in terms of cracking and the ultimate loads, strains in steel and concrete, and failure modes were reported. The circular cavity performed slightly better than the square cavity, with a 3.8% higher cracking load and 4.5% higher ultimate load for the same area and location. In addition, an analytical study of the flexural capacity of the hollow beams was developed. It was found that the proposed analytical model predicted the cracking and ultimate load of the tested hollow GFRP-RC beams with good agreement. Finally, a detailed parametric study was conducted to investigate the effects of several key factors, including the size and location of the holes, as well as the concrete grade and the reinforcement ratio. The results indicated that the position of the holes had a significant effect on the behavior of the hollow GFRP-RC beams. The parametric study showed that the compressive strength of the concrete was the most influential factor on the flexural capacity of the beams, while the GFRP reinforcement ratio had a minor effect on the cracking load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alshimmeri, A.J.H.; Al-Maliki, H.N.G.: Structural behavior of reinforced concrete hollow beams under partial uniformly distributed load. J. Eng. 20, 130–145 (2014)

    Article  Google Scholar 

  2. Al-Maliki, H.N.G.; Al-Balhawi, A.; Alshimmeri, A.J.H.; Zhang, B.: Structural efficiency of hollow reinforced concrete beams subjected to partial uniformly distributed loading. Buildings 11, 391 (2021)

    Article  Google Scholar 

  3. Daud, S.A.; Daud, R.A.; Al-Azzawi, A.A.: Behavior of reinforced concrete solid and hollow beams that have additional reinforcement in the constant moment zone. Ain Shams Eng. J. 12, 31–36 (2021)

    Article  Google Scholar 

  4. Abdulhusain, H.M.; Ismael, M.A.: Structural behavior of hollow reinforced concrete beams: a review. Diyala J. Eng. Sci. 13, 91–101 (2020)

    Article  Google Scholar 

  5. American Concrete Institute, ACI 440.11–22: Building Code Requirements for Structural Concrete Reinforced with Glass Fiber-Reinforced Polymer (GFRP) Bars—Code and Commentary, pp. 1–260 (2022)

  6. Kalpana, V.G.; Subramanian, K.: Behavior of concrete beams reinforced with GFRP BARS. J. Reinf. Plast. Compos. 30, 1915–1922 (2011). https://doi.org/10.1177/0731684411431119

    Article  Google Scholar 

  7. Tavares, D.H.; Giongo, J.S.; Paultre, P.: Behavior of reinforced concrete beams reinforced with GFRP bars. Rev. IBRACON Estrut. Mater. 1, 285–295 (2008). https://doi.org/10.1590/s1983-41952008000300004

    Article  Google Scholar 

  8. Alsayed, S.H.: Flexural behaviour of concrete beams reinforced with GFRP bars. Cem. Concr. Compos. 20, 1–11 (1998). https://doi.org/10.1016/S0958-9465(97)00061-9

    Article  Google Scholar 

  9. Masmoudi, A.; Ben Ouezdou, M.; Haddar, M.: Mode of failure for reinforced concrete beams with GFRP bars. J. Theor. Appl. Mech. 54, 1137–1146 (2016). https://doi.org/10.15632/jtam-pl.54.4.1137

    Article  Google Scholar 

  10. Hosen, M.A.; Johnson Alengaram, U.; Jumaat, M.Z.; Ramli Sulong, N.H.; Darain, K.M.U.: Glass fiber reinforced polymer (GFRP) bars for enhancing the flexural performance of RC beams using side-NSM technique. Polymers (2017). https://doi.org/10.3390/polym9050180

    Article  Google Scholar 

  11. Shaheen, Y.B.; Eltaly, B.A.; Yousef, S.G.; Fayed, S.: Structural performance of ferrocement beams incorporating longitudinal hole filled with lightweight concrete. Int. J. Concr. Struct. Mater. 17, 21 (2023)

    Article  Google Scholar 

  12. Gatia Abtan, Y.; Dhafer AbdulJabbar, H.: Structural behavior of HS-SC reinforced concrete beams with longitudinal and transverse openings strengthened with CFRP laminates. J. Eng. Sustain. Dev. 2018, 48–67 (2018). https://doi.org/10.31272/jeasd.2018.5.5

    Article  Google Scholar 

  13. Sharaky, I.A.; Elamary, A.S.; Alharthi, Y.M.: Flexural response and failure analysis of solid and hollow core concrete beams with additional opening at different locations. Materials 14, 7203 (2021). https://doi.org/10.3390/ma14237203

    Article  Google Scholar 

  14. El-kassas, A.I.; Hassan, H.M.; Arab, M.A.E.S.: Effect of longitudinal opening on the structural behavior of reinforced high-strength self-compacted concrete deep beams. Case Stud. Constr. Mater. 12, e00348 (2020). https://doi.org/10.1016/j.cscm.2020.e00348

    Article  Google Scholar 

  15. Elamary, A.S.; Sharaky, I.A.; Alqurashi, M.: Flexural behaviour of hollow concrete beams under three points loading: experimental and numerical study. Structures 32, 1543–1552 (2021). https://doi.org/10.1016/j.istruc.2021.03.094

    Article  Google Scholar 

  16. Murugesan, A.; Narayanan, A.: Influence of a longitudinal circular hole on flexural strength of reinforced concrete beams. Pract. Period. Struct. Des. Constr. (2017). https://doi.org/10.1061/(asce)sc.1943-5576.0000307

    Article  Google Scholar 

  17. Al-Gasham, T.S.S.: Reinforced concrete moderate deep beams with embedded PVC pipes. Wasit J. Eng. Sci. 3, 19–29 (2015). https://doi.org/10.31185/ejuow.vol3.iss1.32

    Article  Google Scholar 

  18. Ismael, M.A.; Hameed, Y.M.: Structural behavior of hollow-core reinforced self-compacting concrete beams. SN Appl. Sci. (2022). https://doi.org/10.1007/s42452-022-05036-6

    Article  Google Scholar 

  19. Joy, J.; Rajeev, R.: Effect of reinforced concrete beam with hollow neutral axis. Int. J. Sci. Res. Dev. 2, 613–2321 (2014)

    Google Scholar 

  20. Manikandan, S.; Dharmar, S.; Robertravi, S.: Experimental study on flexural behaviour of reinforced concrete hollow core sandwich beams. Int. J. Adv. Res. Sci. Eng. 4, 937–946 (2015)

    Google Scholar 

  21. Gatia Abtan, Y.; Dhafer AbdulJabbar, H.: Experimental study to investigate the effect of longitudinal and transverse openings on the structural behavior of high strength self compacting reinforced concrete beams. J. Eng. Sustain. Dev. 2019, 66–79 (2019). https://doi.org/10.31272/jeasd.23.1.5

    Article  Google Scholar 

  22. Dhinesh, N.P.; Satheesh, V.S.: Flexural behaviour of hollow square beam. Int. J. Sci. Eng. Appl. Sci. 3, 236–242 (2017)

    Google Scholar 

  23. Varghese, N.; Joy, A.: Flexural behaviour of reinforced concrete beam with hollow core at various depth. Int. J. Sci. Res. 5, 741–746 (2016)

    Google Scholar 

  24. Jacob, B.M.; Bincy, S.: Parametric study of longitudinal hollow steel fibre reinforced concrete (SFRC) Beams. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 12011 (2018).

  25. Abbass, A.A.; Abid, S.R.; Arna’ot, F.H.; Al-Ameri, R.A.; Özakça, M.: Flexural response of hollow high strength concrete beams considering different size reductions. Structures 23, 69–86 (2020). https://doi.org/10.1016/j.istruc.2019.10.001

    Article  Google Scholar 

  26. Othman, R.; Muthusamy, K.; Ramadhansyah, P.J.; Youventharan, D.; Sulaiman, M.A.; Nadiatul Adilah, A.A.G.; Chong, B.W.: Experimental study on flexural behaviour of reinforced foamed concrete square hollow beam. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, p. 12046 (2020). https://doi.org/10.1088/1757-899X/712/1/012046

  27. Sirisonthi, A.; Julphunthong, P.; Joyklad, P.; Suparp, S.; Ali, N.; Javid, M.A.; Chaiyasarn, K.; Hussain, Q.: Structural behavior of large-scale hollow section RC beams and strength enhancement using carbon fiber reinforced polymer (CFRP) composites. Polymers 14, 158 (2022). https://doi.org/10.3390/polym14010158

    Article  Google Scholar 

  28. Zhang, X.; Zhang, Y.; Xie, X.: Experimental and analytical investigation of the flexural behaviour of stiffened hollow glulam beams reinforced with fibre reinforced polymer. In: Structures. Elsevier, pp. 810–822 (2023)

  29. Bernardo, L.F.A.; Lopes, S.M.R.: Torsion in high-strength concrete hollow beams: strength and ductility analysis. ACI Struct. J. 106, 39–48 (2009). https://doi.org/10.14359/56282

    Article  Google Scholar 

  30. Jeng, C.H.; Peng, S.F.; Chiu, H.J.; Hsiao, C.K.: New torsion experiment on large-sized hollow reinforced concrete beams. ACI Struct. J. 111, 1469–1480 (2014). https://doi.org/10.14359/51687166

    Article  Google Scholar 

  31. Khuzaie, H.M.A.; Atea, R.S.: Investigation of torsional behavior and capacity of reactive powder concrete (RPC) of hollow T-beam. J. Mater. Res. Technol. 8, 199–207 (2019). https://doi.org/10.1016/j.jmrt.2017.10.008

    Article  Google Scholar 

  32. Alnuaimi, A.S.; Al-Jabri, K.S.; Hago, A.: Comparison between solid and hollow reinforced concrete beams. Mater. Struct. 41, 269–286 (2007). https://doi.org/10.1617/s11527-007-9237-x

    Article  Google Scholar 

  33. Anuradha, V.; Madhavi, TCh.: Behaviour of self compacting concrete hybrid fiber reinforced hollow beams. Structures 35, 990–1001 (2022). https://doi.org/10.1016/j.istruc.2021.11.058

    Article  Google Scholar 

  34. Shuraim, A.B.; El-Sayed, A.K.: Experimental verification of strut and tie model for HSC deep beams without shear reinforcement. Eng. Struct. 117, 71–85 (2016). https://doi.org/10.1016/j.engstruct.2016.03.002

    Article  Google Scholar 

  35. Hassan, H.M.; Arab, M.A.E.S.; El-kassas, A.I.: Behavior of high strength self compacted concrete deep beams with web openings. Heliyon 5, e01524 (2019). https://doi.org/10.1016/j.heliyon.2019.e01524

    Article  Google Scholar 

  36. Brown, V.L.; Gold, W.; Shield, C.: The new ACI code 440.11–22. In: Building for the Future: Durable, Sustainable, Resilient: Proceedings of the Fib Symposium 2023, vol. 1. Springer, pp. 1837–1846 (2023)

  37. Myers, J.J.; Gremel, D.; Ericson, A.; Van Kampen, C.: New ACI 440.11 code adopted for design of concrete reinforced with glass-fiber-reinforced polymer bars. PCI J. 68, 22–28 (2023)

    Article  Google Scholar 

  38. Ramachandra Murthy, A.; Pukazhendhi, D.M.; Vishnuvardhan, S.; Saravanan, M.; Gandhi, P.: Performance of concrete beams reinforced with GFRP bars under monotonic loading. Structures 27, 1274–1288 (2020). https://doi.org/10.1016/j.istruc.2020.07.020

    Article  Google Scholar 

  39. Araba, A.M.; Ashour, A.F.: Flexural performance of hybrid GFRP-Steel reinforced concrete continuous beams. Compos. B Eng. 154, 321–336 (2018)

    Article  Google Scholar 

  40. Ahmad, A.; Bahrami, A.; Alajarmeh, O.; Chairman, N.; Yaqub, M.: Investigation of circular hollow concrete columns reinforced with GFRP bars and spirals. Buildings (2023). https://doi.org/10.3390/buildings13041056

    Article  Google Scholar 

  41. Kankeri, P.; Prakash, S.S.: Experimental evaluation of bonded overlay and NSM GFRP bar strengthening on flexural behavior of precast prestressed hollow core slabs. Eng. Struct. 120, 49–57 (2016)

    Article  Google Scholar 

  42. Zou, Y.; Zheng, K.; Zhou, Z.; Zhang, Z.; Guo, J.; Jiang, J.: Experimental study on flexural behavior of hollow steel-UHPC composite bridge deck. Eng. Struct. 274, 115087 (2023). https://doi.org/10.1016/j.engstruct.2022.115087

    Article  Google Scholar 

  43. Yuan, J.-S.; Xin, Z.; Gao, D.; Zhu, H.; Chen, G.; Hadi, M.N.S.; Zeng, J.-J.: Behavior of hollow concrete-filled rectangular GFRP tube beams under bending. Compos. Struct. 286, 115348 (2022)

    Article  Google Scholar 

  44. Chen, J.; Zhu, Y.; Wang, F.; Feng, B.: Experimental and analytical study of hollow section concrete-filled GFRP tubes in bending. Thin Walled Struct. 177, 109297 (2022)

    Article  Google Scholar 

  45. Abdullah, Q.N.; Abdulla, A.I.: Flexural behavior of hollow self compacted mortar ferrocement beam reinforced by GFRP bars. Case Stud. Constr. Mater. 17, e01556 (2022). https://doi.org/10.1016/j.cscm.2022.e01556

    Article  Google Scholar 

  46. ASTM International: ASTM C150/C150M-18: Standard Specification for Portland cement (2019). https://doi.org/10.1520/C0150

  47. ASTM International: ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, pp. 3–10 (2020). https://doi.org/10.1520/C0039

  48. ASTM International: ASTM C78/C78M: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). West Conshohocken (2018). https://doi.org/10.1520/C0078

  49. Xiong, Z.; Zeng, Y.; Li, L.G.; Kwan, A.K.H.; He, S.H.: Experimental study on the effects of glass fibres and expansive agent on the bond behaviour of glass/basalt FRP bars in seawater sea-sand concrete. Constr. Build. Mater. 274, 122100 (2021). https://doi.org/10.1016/j.conbuildmat.2020.122100

    Article  Google Scholar 

  50. Moon, C.R.; Bang, B.R.; Choi, W.J.; Kang, G.H.; Park, S.Y.: A technique for determining fiber content in FRP by thermogravimetric analyzer. Polym. Test. 24, 376–380 (2005). https://doi.org/10.1016/j.polymertesting.2004.10.002

    Article  Google Scholar 

  51. ASTM International: ASTM D7205: Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars (2011)

  52. ASTM International: ASTM A370 Standard Test Methods and Definitions for Mechanical Testing of Steel Products. West Conshohocken (2013). https://doi.org/10.1520/A0370-12a.2.

  53. Tu’Ma, N.H.; Hammood, M.N.; Mohsin, R.D.: Flexural strength estimation for hollow cross-section simply supported UHPC beams. Civ. Environ. Eng. 17, 476–484 (2021). https://doi.org/10.2478/cee-2021-0050

    Article  Google Scholar 

  54. Ahmed, H.Q.; Jaf, D.K.; Yaseen, S.A.: Flexural capacity and behaviour of geopolymer concrete beams reinforced with glass fibre-reinforced polymer bars. Int. J. Concr. Struct. Mater. (2020). https://doi.org/10.1186/s40069-019-0389-1

    Article  Google Scholar 

  55. Tomlinson, D.; Fam, A.: Performance of concrete beams reinforced with basalt FRP for flexure and shear. J. Compos. Constr. (2015). https://doi.org/10.1061/(asce)cc.1943-5614.0000491

    Article  Google Scholar 

  56. ACI: ACI 318M-14 Building Code Requirements for Structural Concrete (2014)

  57. Nanni, A.; De Luca, A.; Zadeh, H.J.: Reinforced Concrete with FRP Bars: Mechanics and Design. CRC Press (2014)

    Book  Google Scholar 

  58. Bahraq, A.A.; Al-Osta, M.A.; Khan, M.I.; Ahmad, S.: Numerical and analytical modeling of seismic behavior of beam-column joints retrofitted with ultra-high performance fiber reinforced concrete. Structures 32, 1986–2003 (2021). https://doi.org/10.1016/j.istruc.2021.04.004

    Article  Google Scholar 

  59. Murugesan, A.; Narayanan, A.: Deflection of reinforced concrete beams with longitudinal circular hole. Pract. Period. Struct. Des. Constr. 23, 4017034 (2018)

    Article  Google Scholar 

  60. Krall, M.; Polak, M.A.: Concrete beams with different arrangements of GFRP flexural and shear reinforcement. Eng. Struct. 198, 109333 (2019). https://doi.org/10.1016/j.engstruct.2019.109333

    Article  Google Scholar 

  61. Jabbar, S.A.A.; Farid, S.B.H.: Replacement of steel rebars by GFRP rebars in the concrete structures. Karbala Int. J. Mod. Sci. 4, 216–227 (2018). https://doi.org/10.1016/j.kijoms.2018.02.002

    Article  Google Scholar 

  62. Nariman, N.A.; Hamdia, K.; Ramadan, A.M.; Sadaghian, H.: Optimum design of flexural strength and stiffness for reinforced concrete beams using machine learning. Appl. Sci. (2021). https://doi.org/10.3390/app11188762

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Department of Civil & Environmental Engineering at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, and the first and last authors also acknowledge the support of the Department of Civil Engineering at Taif University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Al-Osta.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, F.M., Al-Osta, M.A., Rahman, M.K. et al. Flexural Behavior of Concrete Hollow-Core Beams Reinforced with GFRP Bars: Experimental and Analytical Investigation. Arab J Sci Eng 49, 5267–5286 (2024). https://doi.org/10.1007/s13369-023-08372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08372-w

Keywords

Navigation