Skip to main content
Log in

Thermodynamic Investigation of a Photovoltaic/Thermal Heat Pipe Energy System Integrated with Phase Change Material

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Photovoltaic panels may capture up to 80% of the sun’ radiant energy; however, depending on the panel composition, only a small portion is converted to electricity. The remaining energy causes the surface temperature of the panel to increase. Temperature rise at the panel’s surface is a critical problem affecting efficiency and shortening panel lifespan; hence, thermal management of the photovoltaic module during operation is vital. Hybrid designs that cogenerate electricity and heating (hot water or space heating) have been proven to be a feasible solution. A photovoltaic panel coupled with heat pipes and phase change materials could be a promising solution to generate electricity and utilize the waste heat simultaneously. This paper presents a mathematical approach to examine the dynamic performance of the photovoltaic thermal panel integrated with phase change material and heat pipe (HP-PV/T-PCM) setup. Furthermore, a comparison study is conducted to compare the simulation and experimental test results to validate the proposed model’s accuracy. The effects of melting point temperature of phase change material, water flow rate, and the heat pipes number on the main output parameters of the proposed setup are investigated. The results show that adding the PCM layer to the system increases the heat gain by 7.58%. At the design condition, daily average electrical and thermal power outputs could reach 58.56 and 277.167 W/m2 for the HP-PV/T-PCM system and 57.53 and 257.642 W/m2 for the HP-PV/T system, respectively. In addition, the daily average thermal, electrical, and overall efficiencies are obtained at 46.33%, 9.79%, and 53.65% for the HP-PV/T-PCM system and 43.06%, 9.62%, and 50.18% for the HP-PV/T system, respectively. Hence, compared with the PVT/HP setup, the electrical, thermal, and overall efficiencies of the PVT/HP/PCM system have increased by 1.77%, 7.59%, and 6.92%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

HP:

Heat pipe

PVT:

Photovoltaic/thermal

PCM:

Phase change material

PV:

Photovoltaic

\(\mathrm{EVA}\) :

Ethylene-vinyl acetate

TPT:

Tedlar–polyester–tellar

\(\mathrm{SWH}\) :

Solar water heating

BIPVT:

Building-integrated photovoltaic/thermal

RC:

Radiative cooling

A :

Area (m2)

B :

Temperature function of PCM layer (–)

\(C\) :

Specific heat capacity (J/(kg K))

\(d\) :

Diameter (m)

\(G\) :

Solar radiation intensity (W/m2)

\(h\) :

Heat transfer coefficient (W/(m2 K)), Enthalpy (kJ/K)

K :

Thermal conductivity (W/(m K))

\(L\) :

Length (m)

\(\mathrm{LH}\) :

Latent heat (kJ/kg)

\(M\) :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg/s)

\(\mathrm{Nu}\) :

Nusselt number (–)

\(P\) :

Output power (W)

\(Q\) :

Heat gain (W)

R :

Thermal resistance (K/W)

\(T\) :

Temperature (°C or K)

\(t\) :

Time (s)

\(u\) :

Wind velocity (m/s)

\({X}\) :

PCM melting fraction (–)

\({W}\) :

Width (m)

\(\alpha \) :

Absorptivity (–)

\(\beta \) :

Temperature coefficient (–)

\(\gamma \) :

PV cells coverage ratio (–)

\(\delta \) :

Thickness (m)

\(\varepsilon \) :

Emissivity (–)

\(\eta \) :

Efficiency

\(\theta \) :

Angle (deg)

\(\rho \) :

Density (kg/m3, reflectance)

\(\sigma \) :

Stefan–Boltzmann constant (W/(m2K4))

\(\tau \) :

Transmittance (–)

\((\tau \alpha )\) :

Transmittance–absorptance product (–)

\(\mu \) :

Dynamic viscosity (pa s)

\(a\) :

Ambient

\(\mathrm{ad}\) :

Adhesive layer

\(b\) :

Base panel

\(c\) :

Collector

\(\mathrm{con}\) :

Condenser section of heat pipe

\(\mathrm{ele}\) :

Electrical

\(\mathrm{eva}\) :

Evaporator section of heat pipe

\(g\) :

Glass cover

\(\mathrm{gap}\) :

Air gap between the glass cover and the PV plate

Hp:

Heat pipe

I :

Inner

in:

Insulation

\(j\) :

Differential node “j

\(l\) :

Liquid

\(o\) :

Outer

\(\mathrm{overall}\) :

Overall

\(\mathrm{pv}\) :

PV cell

\(r\) :

Reference

\(\mathrm{sky}\) :

Sky

\(\mathrm{th}\) :

Thermal

\(v\) :

Vapor

\(w\) :

Water

\(\mathrm{wick}\) :

Wick of the heat pipe

References

  1. Sabiha, M.A.; Saidur, R.; Mekhilef, S.; Mahian, O.: Progress and latest developments of evacuated tube solar collectors. Renew. Sustain. Energy Rev. 51, 1038–1054 (2015). https://doi.org/10.1016/j.rser.2015.07.016

    Article  Google Scholar 

  2. Maadi, S.R.; Navegi, A.; Solomin, E.; Ahn, H.S.; Wongwises, S.; Mahian, O.: Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluids. Energy 234, 121190 (2021). https://doi.org/10.1016/j.energy.2021.121190

    Article  CAS  Google Scholar 

  3. Khordehgah, N.; Guichet, V.; Lester, S.; Jouhara, H.: Computational study and experimental validation of a solar photovoltaics and thermal technology. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.05.108

    Article  Google Scholar 

  4. Alexis, L.; Tangka, J.K.; Boris Merlain, D.K.; Bertholt, S.: Experimental study on the electrical and thermal characteristics of a hybrid photovoltaic / thermal water solar collector model using photovoltaic solar modules of different brands. Energy Convers. Manag. X 14, 100198 (2022). https://doi.org/10.1016/j.ecmx.2022.100198

    Article  CAS  Google Scholar 

  5. Sathe, T.M.; Dhoble, A.S.: A review on recent advancements in photovoltaic thermal techniques. Renew. Sustain. Energy Rev. 76, 645–672 (2017). https://doi.org/10.1016/j.rser.2017.03.075

    Article  Google Scholar 

  6. Chauhan, A.; Tyagi, V.V.; Anand, S.: Futuristic approach for thermal management in solar PV/thermal systems with possible applications. Energy Convers. Manag. 163, 314–354 (2018). https://doi.org/10.1016/j.enconman.2018.02.008

    Article  Google Scholar 

  7. Anand, B.; Shankar, R.; Murugavelh, S.; Rivera, W.; Midhun Prasad, K.; Nagarajan, R.: A review on solar photovoltaic thermal integrated desalination technologies. Renew. Sustain. Energy Rev. 141, 110787 (2021). https://doi.org/10.1016/j.rser.2021.110787

    Article  CAS  Google Scholar 

  8. Islam, M.M.; Pandey, A.K.; Hasanuzzaman, M.; Rahim, N.A.: Recent progresses and achievements in photovoltaic-phase change material technology: a review with special treatment on photovoltaic thermal-phase change material systems. Energy Convers. Manag. 126, 177–204 (2016). https://doi.org/10.1016/j.enconman.2016.07.075

    Article  CAS  Google Scholar 

  9. Madurai Elavarasan, R., et al.: Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: a critical review. Energy Convers. Manag. 255, 115278 (2022). https://doi.org/10.1016/j.enconman.2022.115278

    Article  CAS  Google Scholar 

  10. Khairnasov, S.M.; Naumova, A.M.: Heat pipes application to solar energy systems. Appl. Sol. Energy 52(1), 47–60 (2016). https://doi.org/10.3103/S0003701X16010060

    Article  Google Scholar 

  11. Li, H.; Liu, H.; Li, M.: Review on heat pipe based solar collectors: classifications, performance evaluation and optimization, and effectiveness improvements. Energy 244, 122582 (2022). https://doi.org/10.1016/j.energy.2021.122582

    Article  Google Scholar 

  12. Bahaidarah, H.M.S.; Baloch, A.A.B.; Gandhidasan, P.: Uniform cooling of photovoltaic panels: a review. Renew. Sustain. Energy Rev. 57, 1520–1544 (2016). https://doi.org/10.1016/j.rser.2015.12.064

    Article  Google Scholar 

  13. Zhou, J.; Zhong, W.; Wu, D.; Ji, W.; He, W.: A review on the heat pipe photovoltaic/thermal (PV/T) system. J. Therm. Sci. (2021). https://doi.org/10.1007/s11630-021-1434-3

    Article  Google Scholar 

  14. Deng, Y.; Quan, Z.; Zhao, Y.; Wang, L.; Liu, Z.: Experimental research on the performance of household-type photovoltaic–thermal system based on micro-heat-pipe array in Beijing. Energy Convers. Manag. 106, 1039–1047 (2015). https://doi.org/10.1016/j.enconman.2015.09.067

    Article  Google Scholar 

  15. Wang, Z.; Qiu, F.; Yang, W.; Zhao, X.; Mei, S.: Experimental investigation of the thermal and electrical performance of the heat pipe BIPV/T system with metal wires. Appl. Energy 170, 314–323 (2016). https://doi.org/10.1016/j.apenergy.2016.02.140

    Article  ADS  Google Scholar 

  16. Hu, M.; Zheng, R.; Pei, G.; Wang, Y.; Li, J.; Ji, J.: Experimental study of the effect of inclination angle on the thermal performance of heat pipe photovoltaic/thermal (PV/T) systems with wickless heat pipe and wire-meshed heat pipe. Appl. Therm. Eng. (2016). https://doi.org/10.1016/j.applthermaleng.2016.06.003

    Article  Google Scholar 

  17. Hou, L.; Quan, Z.; Zhao, Y.; Wang, L.; Wang, G.: An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T). Energy Build. 124, 60–69 (2016). https://doi.org/10.1016/j.enbuild.2016.03.056

    Article  Google Scholar 

  18. Du, Y.: Advanced thermal management of a solar cell by a nano-coated heat pipe plate: a thermal assessment. Energy Convers. Manag. 134, 70–76 (2017). https://doi.org/10.1016/j.enconman.2016.11.059

    Article  CAS  Google Scholar 

  19. Xuxin, Z.; Huide, F.; Jie, J.; Hongyuan, S.; Rui, M.; Qixing, W.: Comparative study on performances of a heat-pipe PV/T system and a heat-pipe solar water heating system. Int. J. Green Energy 13(3), 229–240 (2016). https://doi.org/10.1080/15435075.2014.910782

    Article  Google Scholar 

  20. Long, H.; Chow, T.-T.; Ji, J.: Building-integrated heat pipe photovoltaic/thermal system for use in Hong Kong. Sol. Energy 155, 1084–1091 (2017). https://doi.org/10.1016/j.solener.2017.07.055

    Article  ADS  Google Scholar 

  21. Wang, Z.; Huang, Z.; Chen, F.; Zhao, X.; Guo, P.: Experimental investigation of the novel BIPV/T system employing micro-channel flat-plate heat pipes. Build. Serv. Eng. Res. Technol. 39(5), 540–556 (2018). https://doi.org/10.1177/0143624418754337

    Article  Google Scholar 

  22. Yu, M., et al.: Experimental investigation of a novel solar micro-channel loop-heat-pipe photovoltaic/thermal (MC-LHP-PV/T) system for heat and power generation. Appl. Energy 256, 113929 (2019). https://doi.org/10.1016/j.apenergy.2019.113929

    Article  CAS  Google Scholar 

  23. Shittu, S.; Li, G.; Zhao, X.; Akhlaghi, Y.G.; Ma, X.; Yu, M.: Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Convers. Manag. 193, 1–14 (2019). https://doi.org/10.1016/j.enconman.2019.04.055

    Article  Google Scholar 

  24. Ren, X., et al.: Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model. Energy 190, 116338 (2020). https://doi.org/10.1016/j.energy.2019.116338

    Article  Google Scholar 

  25. Fan, W.; Kokogiannakis, G.; Ma, Z.: Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes. Renew. Energy 138, 90–105 (2019). https://doi.org/10.1016/j.renene.2019.01.078

    Article  Google Scholar 

  26. Alizadeh, H.; Alhuyi Nazari, M.; Ghasempour, R.; Shafii, M.B.; Akbarzadeh, A.: Numerical analysis of photovoltaic solar panel cooling by a flat plate closed-loop pulsating heat pipe. Sol. Energy 206, 455–463 (2020). https://doi.org/10.1016/j.solener.2020.05.058

    Article  ADS  Google Scholar 

  27. Han, X.; Zhao, X.; Chen, X.: Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renew. Energy 162, 55–70 (2020). https://doi.org/10.1016/j.renene.2020.07.131

    Article  CAS  Google Scholar 

  28. Chen, F., et al.: Experimental and numerical investigation of a novel photovoltaic/thermal system using micro-channel flat loop heat pipe (PV/T-MCFLHP). Int. J. Low-Carbon Technol. 15(4), 513–527 (2020). https://doi.org/10.1093/ijlct/ctaa019

    Article  CAS  Google Scholar 

  29. Zhang, T.; Cai, J.; Zheng, W.; Zhang, Y.; Meng, Q.: Comparative and sensitive analysis of the annual performance between the conventional and the heat pipe PV/T systems. Case Stud. Therm. Eng. 28, 101380 (2021). https://doi.org/10.1016/j.csite.2021.101380

    Article  Google Scholar 

  30. Brahim, T.; Jemni, A.: Parametric study of photovoltaic/thermal wickless heat pipe solar collector. Energy Convers. Manag. 239, 114236 (2021). https://doi.org/10.1016/j.enconman.2021.114236

    Article  CAS  Google Scholar 

  31. Ahmed, S.; Li, S.; Li, Z.; Xiao, G.; Ma, T.: Enhanced radiative cooling of solar cells by integration with heat pipe. Appl. Energy 308, 118363 (2022). https://doi.org/10.1016/j.apenergy.2021.118363

    Article  Google Scholar 

  32. Mahian, O.; Ghafarian, S.; Sarrafha, H.; Kasaeian, A.; Yousefi, H.; Yan, W.-M.: Phase change materials in solar photovoltaics applied in buildings: an overview. Sol. Energy 224, 569–592 (2021). https://doi.org/10.1016/j.solener.2021.06.010

    Article  CAS  ADS  Google Scholar 

  33. Fragnito, A.; Bianco, N.; Iasiello, M.; Mauro, G.M.; Mongibello, L.: Experimental and numerical analysis of a phase change material-based shell-and-tube heat exchanger for cold thermal energy storage. J. Energy Storage 56, 105975 (2022). https://doi.org/10.1016/j.est.2022.105975

    Article  Google Scholar 

  34. Talebizadehsardari, P.; Mahdi, J.M.; Mohammed, H.I.; Moghimi, M.A.; Hossein Eisapour, A.; Ghalambaz, M.: Consecutive charging and discharging of a PCM-based plate heat exchanger with zigzag configuration. Appl. Therm. Eng. 193, 116970 (2021). https://doi.org/10.1016/j.applthermaleng.2021.116970

    Article  Google Scholar 

  35. Bianco, N.; Caliano, M.; Fragnito, A.; Iasiello, M.; Mauro, G.M.; Mongibello, L.: Thermal analysis of micro-encapsulated phase change material (MEPCM)-based units integrated into a commercial water tank for cold thermal energy storage. Energy 266, 126479 (2023). https://doi.org/10.1016/j.energy.2022.126479

    Article  Google Scholar 

  36. Yuan, W., et al.: Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material. Appl. Energy 232, 715–727 (2018). https://doi.org/10.1016/j.apenergy.2018.09.096

    Article  ADS  Google Scholar 

  37. Xu, H.; Wang, N.; Zhang, C.; Qu, Z.; Karimi, F.: Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Convers. Manag. 229, 113660 (2021). https://doi.org/10.1016/j.enconman.2020.113660

    Article  Google Scholar 

  38. Kazemian, A.; Basati, Y.; Khatibi, M.; Ma, T.: Performance prediction and optimization of a photovoltaic thermal system integrated with phase change material using response surface method. J. Clean. Prod. 290, 125748 (2021). https://doi.org/10.1016/j.jclepro.2020.125748

    Article  Google Scholar 

  39. Abd El-Hamid, M.; Wei, G.; Cui, L.; Xu, C.; Du, X.: Three-dimensional heat transfer studies of glazed and unglazed Photovoltaic/Thermal systems embedded with phase change materials. Appl. Therm. Eng. 208, 118222 (2022). https://doi.org/10.1016/j.applthermaleng.2022.118222

    Article  CAS  Google Scholar 

  40. Gürbüz, H.; Demirtürk, S.; Akçay, H.; Topalcı, Ü.: Experimental investigation on electrical power and thermal energy storage performance of a solar hybrid PV/T-PCM energy conversion system. J. Build. Eng. 69, 106271 (2023). https://doi.org/10.1016/j.jobe.2023.106271

    Article  Google Scholar 

  41. Hamada, A.; Emam, M.; Refaey, H.A.; Moawed, M.; Abdelrahman, M.A.: Investigating the performance of a water-based PVT system using encapsulated PCM balls: an experimental study. Energy 284, 128574 (2023). https://doi.org/10.1016/j.energy.2023.128574

    Article  Google Scholar 

  42. Alsaqoor, S.; Alqatamin, A.; Alahmer, A.; Nan, Z.; Al-Husban, Y.; Jouhara, H.: The impact of phase change material on photovoltaic thermal (PVT) systems: a numerical study. Int. J. Thermofluids 18, 100365 (2023). https://doi.org/10.1016/j.ijft.2023.100365

    Article  CAS  Google Scholar 

  43. Sweidan, A.E.H.A.: Optimized design and operation of heat-pipe PV-T system with phase change material for thermal storage (2015).

  44. Wang, Z.; Zhang, J.; Wang, Z.; Yang, W.; Zhao, X.: Experimental investigation of the performance of the novel HP-BIPV/T system for use in residential buildings. Energy Build. 130, 295–308 (2016). https://doi.org/10.1016/j.enbuild.2016.08.060

    Article  Google Scholar 

  45. Diallo, T.M.O., et al.: Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy 167, 866–888 (2019). https://doi.org/10.1016/j.energy.2018.10.192

    Article  Google Scholar 

  46. González-Peña, D.; Alonso, I.; Montserrat, D.-M.; Alonso-Tristán, C.: Experimental analysis of a novel PV/T panel with PCM and heat pipes. Sustainability 12, 1710 (2020). https://doi.org/10.3390/su12051710

    Article  CAS  Google Scholar 

  47. Gang, P.; Huide, F.; Tao, Z.; Jie, J.: A numerical and experimental study on a heat pipe PV/T system. Sol. Energy 85(5), 911–921 (2011). https://doi.org/10.1016/j.solener.2011.02.006

    Article  ADS  Google Scholar 

  48. Makki, A.; Omer, S.; Su, Y.; Sabir, H.: Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system. Energy Convers. Manag. 112, 274–287 (2016). https://doi.org/10.1016/j.enconman.2015.12.069

    Article  Google Scholar 

  49. Babayan, M.; Mazraeh, A.E.; Yari, M.; Niazi, N.A.; Saha, S.C.: Hydrogen production with a photovoltaic thermal system enhanced by phase change materials, Shiraz, Iran case study. J. Clean. Prod. 215, 1262–1278 (2019). https://doi.org/10.1016/j.jclepro.2019.01.022

    Article  CAS  Google Scholar 

  50. Kant, K.; Shukla, A.; Sharma, A.; Biwole, P.H.: Heat transfer studies of photovoltaic panel coupled with phase change material. Sol. Energy 140, 151–161 (2016). https://doi.org/10.1016/j.solener.2016.11.006

    Article  CAS  ADS  Google Scholar 

  51. Kazemian, A.; Salari, A.; Hakkaki-Fard, A.; Ma, T.: Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material. Appl. Energy 238, 734–746 (2019). https://doi.org/10.1016/j.apenergy.2019.01.103

    Article  ADS  Google Scholar 

  52. Su, D.; Jia, Y.; Lin, Y.; Fang, G.: Maximizing the energy output of a photovoltaic–thermal solar collector incorporating phase change materials. Energy Build. 153, 382–391 (2017). https://doi.org/10.1016/j.enbuild.2017.08.027

    Article  Google Scholar 

  53. Yazdanifard, F.; Ebrahimnia-Bajestan, E.; Ameri, M.: Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime. Renew. Energy 99, 295–306 (2016). https://doi.org/10.1016/j.renene.2016.07.004

    Article  CAS  Google Scholar 

  54. Ghaddar, N.; Sweidan, A.; Ghali, K.: Heat-pipe PV-T system with phase change thermal storage to enhance the energy efficiency (2015)

  55. Sobolčiak, P., et al.: Heat transfer performance of paraffin wax based phase change materials applicable in building industry. Appl. Therm. Eng. 107, 1313–1323 (2016). https://doi.org/10.1016/j.applthermaleng.2016.07.050

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sulaiman Alsagri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsagri, A.S. Thermodynamic Investigation of a Photovoltaic/Thermal Heat Pipe Energy System Integrated with Phase Change Material. Arab J Sci Eng 49, 2625–2643 (2024). https://doi.org/10.1007/s13369-023-08362-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08362-y

Keywords

Navigation