Skip to main content

Advertisement

Log in

Copper Nanoparticles Doped on Polyvinyl Alcohol/Polymethyl Methacrylate/Montmorillonite (PVA-PMMA/MMT) as Ecofriendly Polymeric Hybrid Clay Composites: Study of their Bactericidal and Physical Properties

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper reports the synthesis, physical and antibacterial properties of a new type of copper nanoparticles (CuNPs) on activated PVA/PMMA/montmorillonite (MMT) polymeric clay composites. These materials were synthesized by ecofriendly solvent evaporation technique wherein the CuNPs were prepared via the green route. The prepared polymeric nanohybrid was characterized using various analytical techniques. The UV–Vis spectral data analyses revealed that the direct optical band gap energy (DBGE) can be tuned from deep UV to visible region (4.70–2.75 Ev) by controlling the CuNPs loading, indicating their potential uses as optoelectronic gears. The XRD analysis confirmed a strong interaction between CuNPs and polymeric clay composite. The Young’s modulus of the composites was highest (2503.2 MPa) at lowest CuNPs doping content. The water contact angle (WCA) values were increased from 19ο (for PVA/PMMA) to 51ο (PVA/PMMA/CuNPs), indicating an improvement in the composite’s hydrophobicity due to CuNPs loading. In addition, these composites displayed excellent bactericidal activity. Based on the results of WCA, DBGE and antibacterial performance, it was asserted that the proposed nanohybrids can be highly valuable for the food packaging industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Montanheiro, T.L.D.A.; Ribas, R.G.; Montagna, L.S.; Menezes, B.R.C.D.; Schatkoski, V.M.; Rodrigues, K.F.; Thim, G.P.: A brief review concerning the latest advances in the influence of nanoparticle reinforcement into polymeric-matrix biomaterials. J. Biomater. Sci. Polym. Ed. 31, 169–189 (2020)

    Article  Google Scholar 

  2. Guchait, A.; Saxena, A.; Chattopadhyay, S.; Mondal, T.: Influence of nanofillers on adhesion properties of polymeric composites. ACS Omega 7, 3844–3859 (2022)

    Article  Google Scholar 

  3. Aparna, A.; Sethulekshmi, A.S.; Jayan, J.S.; Saritha, A.; Joseph, K.: Recent advances in boron nitride based hybrid polymer nanocomposites. Macromol. Mater. Eng. 306, 2100429 (2021)

    Article  Google Scholar 

  4. Wu, I.: nanomaterials for printed electronics: a review. Nanoscale 9, 7342–7372 (2017)

    Article  Google Scholar 

  5. De Oliveira, A.D.; Beatrice, C.A.G.: Polymer nanocomposites with different types of nanofiller. Nanocomposites-Recent Evol 18, 103–104 (2018)

    Google Scholar 

  6. Batra, A.K.; Aggarwal, M.D.; Edwards, M.E.; Bhalla, A.: Present status of polymer: ceramic composites for pyroelectric infrared detectors. Ferroelectrics 366, 84–121 (2018)

    Article  Google Scholar 

  7. Wu, Z.; Huang, Y.; Xiao, L.; Lin, D.; Yang, Y.; Wang, H.; Pu, S.: Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int. J. Biol. Macromol. 123, 569–575 (2019)

    Article  Google Scholar 

  8. Ajayan, P.M.; Schadler, L.S.; Braun, P.V.: Nanocomposite Science and Technology, p. 112. Wiley, USA (2003)

    Book  Google Scholar 

  9. Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I.: Experimental trends in polymer nanocomposites—a review. Mater. Sci Eng: A. 393, 1–11 (2005)

    Article  Google Scholar 

  10. Berta, M.; Lindsay, C.; Pans, G.; Camino, G.: Effect of chemical structure on combustion and thermal behavior of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)

    Article  Google Scholar 

  11. Sanchez, C.; Julián, B.; Belleville, P.; Popall, M.: Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)

    Article  Google Scholar 

  12. Singh, A.; Jain, D.; Upadhyay, M.K.; Khandelwal, N.; Verma, H.N.: Verma HN Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Digest J. Nanomater. Biostruct. 5, 483–489 (2010)

    Google Scholar 

  13. Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S.: Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. Elsevier Ltd, Netherlands (2018)

    Book  Google Scholar 

  14. Sinha, S.; Pan, I.; Chanda, P.; Sen, S.K.: Nanoparticles fabrication using ambient biological resources. J. Appl. Biosci. 19, 1113–1130 (2009)

    Google Scholar 

  15. Thirumurgan, A.; Tomy, N.A.; Jai, G.R.; Gobikrishnan, S.: Biological reduction of silver nanoparticles using plant leaf extracts and its effect an increased antimicrobial activity against clinically isolated organism. Pharm. Chem. 2, 279–284 (2009)

    Google Scholar 

  16. Kolybaba, M.; Tabil, L. G.; Panigrahi, S.; Crerar, W. J.; Powell, T.; Wang, B.: Biodegradable polymers: past, present, and future. In: ASABE/CSBE North Central Intersectional Meeting, American Society of Agricultural and Biological Engineers, p. 1, (2006)

  17. Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S.: Plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. (2015). https://doi.org/10.1016/j.jare.2015.02.007

    Article  Google Scholar 

  18. Ahmed, S.; Ikram, S.: Chitosan & its derivatives: a review in recent innovations. Int. J. Pharm. Sci. Res. 6(1), 14–30 (2015)

    Google Scholar 

  19. Shakeel, A.; Saifullah, M.; Ahmad, B.; Swami, L.; Saiqa, I.: Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Rad. Res. Appl. Sci. 9, 1–7 (2016)

    Google Scholar 

  20. Rout, Y.; Behera, S.; Ojha, A.K.; Nayak, P.L.: Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob. 4, 103–109 (2012)

    Article  Google Scholar 

  21. Fatma, S.; Kalainila, P.; Ravindran, E.; Renganathan, S.: Green synthesis of copper nanoparticle from Passiflora foetida leaf extract and its antibacterial activity. Asian J. Pharm. Clin. Res. 1, 79–83 (2017)

    Google Scholar 

  22. Salloom, H.T.; Jasim, A.S.; Hamad, T.K.: synthesis and optical characterization of Ag/PVA nanocomposites films. Al-Nahrain J. Sci. 20, 56–63 (2017)

    Google Scholar 

  23. Chandran, N.; Nair, S. S.: Structural and optical properties of copper nanoparticles synthesized via wet chemical route. In: AIP Conference Proceedings, vol. 2244, p. 070020, AIP Publishing LLC, (2020)

  24. Harne, S.; Sharma, A.; Dhaygude, M.; Joglekar, S.; Kodam, K.; Hudlikar, M.: Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf., B 95, 284–288 (2012)

    Article  Google Scholar 

  25. Amaregouda, Y.; Kamanna, K.; Gasti, T.; Kumbar, V.: Enhanced functional properties of biodegradable Polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) composite films reinforced with L-alanine surface modified CuO nanorods. J. Polym. Environ. 30(6), 2559–3257 (2022)

    Article  Google Scholar 

  26. Kumar, R.; Sharma, A.; Kumar, R.; Sharma, P.K.: Tuning of optical parameters of polyvinyl alcohol by Cu-Ag core-shell nanoparticles. Integr. Ferroelectr. 204(1), 150–156 (2020)

    Article  Google Scholar 

  27. Mansour, A.F.; Mansour, S.F.; Abdo, M.A.: Improvement structural and optical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys. 7(2), 60–69 (2015)

    Google Scholar 

  28. Liu, L.; Xiang, P.; Huang, Y.: Synthesis and study on thermal stability of PMMA microspheres by emulsion polymerization. In: Journal of Physics Conference Series, vol. 1549, p. 032094. IOP Publishing, (2020)

  29. Wang, Y.; Fan, J.; Zhao, H.; Song, X.; Ji, Z.; Xie, C.; Meng, Y.: Biomimetic robust starch composite films with super-hydrophobicity and vivid structural colors. Int. J. Mol. Sci. 23(10), 5607 (2022)

    Article  Google Scholar 

  30. Sugumaran, S.; Bellan, C.S.: Transparent nano composite PVA–TiO2 and PMMA–TiO2 thin films: optical and dielectric properties. Optik 125(18), 5128–5133 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Higher Education Endowment Fund (HEREF project No.118), Project Management Unit, Khyber Pakhtunkhwa and Higher Education Commission (HEC) NRPU project No.10164 (Pakistan) for funding this research. Dr. Gondal and Dr. El Ali are grateful to KFUPM for supporting this work and also appreciate the support of KACARE and CRAC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabiha Sultana or Mohammed A. Gondal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, S., Gondal, M.A., Naveed, A. et al. Copper Nanoparticles Doped on Polyvinyl Alcohol/Polymethyl Methacrylate/Montmorillonite (PVA-PMMA/MMT) as Ecofriendly Polymeric Hybrid Clay Composites: Study of their Bactericidal and Physical Properties. Arab J Sci Eng 49, 429–437 (2024). https://doi.org/10.1007/s13369-023-08164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08164-2

Keywords

Navigation