Skip to main content
Log in

Experimental Study of the Condensation of Retrofit Refrigerant R32 Over Single Horizontal Plain and 2D Low-Finned Integral Tubes

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study deals with the film condensation of the retrofit refrigerant R32 over a single horizontal plain and four 2D low-finned integral tubes with varying fin densities, viz., 24 FPI, 32 FPI, 40 FPI, and 48 FPI, having trapezoidal fin shapes, at a condensing temperature of 40 ± 0.5 °C and subcooling temperature ranging from 3 to 11 °C. For the plain and complete 2D low-finned integral finned tubes under consideration, the coefficient of condensing-side heat transfer falls with an increase in the sub-cooling temperature. As the fin density increases from 24 to 32 FPI, the condensing-side heat transfer increases by an average increment of 31%, and as the fin density increases further to 40 FPI and then to 48 FPI, the condensation heat transfer decreases by 13.3 and 23.8%, respectively. Among the 2D low-finned integral tubes tested, the 32 FPI fin density showed the best heat transmission performance. Furthermore, following a similar pattern, the coefficients of condensing-side heat transfer for the entire tubes fall as the heat flux rises. In comparison with the plain tube, the entire 2D low-finned integral finned tubes, viz., 24 FPI, 32 FPI, 40 FPI, and 48 FPI, showed higher coefficients of condensation heat transfers with enhancement ratios of 4.4, 5.7, 4.9, and 4.6, respectively. Among the six theoretical models compared, the Honda Nozu model showed the lowest average deviation percentage compared to the experimental values. Nusselt’s model predicted the experimental findings for the plain tube with an average variation of ± 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

FPI:

Fins per inch

FPM:

Fins per meter

GWP:

Global warming potential

HTER:

Heat transfer enhancement ratio

ODP:

Ozone depletion potential

SAER:

Surface area increments ratio

\(A\) :

The surface area of the test tube, mm2

\({C}_{p}\) :

Specific heat at constant pressure, kJ/kg·K

\(d\) :

Diameter, mm

\(f\) :

Friction coefficient

f c :

Half-perimeter fully flooded fraction

\(g\) :

Gravity, m/s2

\(h\) :

Fin height, mm

\({h}_{o}\) :

Coefficient of condensation heat transfer, kW/m2·K

\({h}_{fg}\) :

Enthalpy of vaporization, kJ/kg

\(i\) :

Enthalpy, kJ/kg

\({i}^{\mathrm{^{\prime}}}\) :

Modified enthalpy, kJ/kg

\(k\) :

Condensate thermal conductivity, mW/m·K

\({K}_{o}\) :

Overall heat transfer coefficient, kW/m2·K

\(l\) :

Characteristic length, mm

\(L\) :

Length of the test tube, mm

\(\dot{m}\) :

Mass flow rate, kg/s

\(Nu\) :

Nusselt number

\(P\) :

Pressure, Pa

\(Pr\) :

Prandtl number

\({P}_{f}\) :

Fin pitch, mm

\(\Delta P\) :

Pressure drops, Pa

\(Q\) :

Rate of heat transfer, kW

\(q\) :

Heat flux, kW/m2

\(R\) :

Radius, mm

\(\mathrm{Re}\) :

Reynolds number

\({R}_{f}\) :

Fouling resistance

\({R}_{w}\) :

Conduction thermal resistance

\(T\) :

Temperature, °C

\(t\) :

Fin thickness, mm

\({\Delta T}_{f}\) :

Wall sub-cooling temperature, °C

\(\Delta {T}_{m}\) :

Log-mean temperature, °C

U :

Absolute uncertainty

\(\Gamma\) :

Film flowrate, kg/m·s

\(\delta\) :

Film thickness, m

\(\mu\) :

Viscosity, Pa·s

\(v\) :

Velocity, m/s

\(\rho\) :

Density, kg/m3

\(\sigma\) :

Surface tension, Pa·m

\(\theta\) :

Index angle, ° (degree)

\({\varphi }_{f}\) :

Retention angle

\(\lambda\) :

Thermal conductivity, kW/m·K

\(\mathrm{ave}\) :

Average

b :

Fin bottom

c:

Coolant side

\({C}_{1}\) :

Coolant inlet

\({C}_{2}\) :

Coolant outlet

\(\mathrm{con}\) :

Condensation

\(cw\) :

Coolant water

exp:

Experimental

\(f\) :

Saturated liquid

\(i\) :

Inlet, internal

\(l\) :

Liquid

Nu :

Nusselt’s predicted

\(o\) :

Outside, outlet

r :

Root of fin

\(\mathrm{ref}\) :

Refrigerant fluid

\(\mathrm{sat}\) :

Saturation

\(t\) :

Tube, fin tip

\(v\) :

Saturated vapor, vapor side

x :

Measured quantity

y :

Parameter

References

  1. Kukulka, D.J.; Smith, R.; Li, W.: Comparison of condensation and evaporation heat transfer on the outside of smooth and enhanced 1EHT tubes. Appl Therm Eng. 105, 913–922 (2016). https://doi.org/10.1016/j.applthermaleng.2016.03.036

    Article  CAS  Google Scholar 

  2. Cengel, Y.A.; Boles, M.A.; Kanoğlu, M.: Thermodynamics: an engineering approach. McGraw-hill New York (2011)

  3. Mustefa, I.; Kumar, R.: Recent Advancements in A Film-Wise Condensation Over Outside of Single Horizontal Tubes. In: Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17–20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India. Begel House Inc. (2021)

  4. Zhang, Z.; Li, Q.; Xu, T.; Fang, X.; Gao, X.: Condensation heat transfer characteristics of zeotropic refrigerant mixture R407C on single, three-row petal-shaped finned tubes and helically baffled condenser. Appl Therm Eng. 39, 63–69 (2012). https://doi.org/10.1016/j.applthermaleng.2012.01.021

    Article  CAS  Google Scholar 

  5. Heath, E.A.: Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali amendment). Int. Leg. Mater. 56, 193–205 (2017)

    Article  Google Scholar 

  6. Breidenich, C.; Magraw, D.; Rowley, A.; Rubin, J.W.: The Kyoto protocol to the United Nations framework convention on climate change. Am. J. Int. Law 92, 315–331 (1998)

    Article  Google Scholar 

  7. Morrow, J.A.; Huber, R.A.; Nawaz, K.; Derby, M.M.: Flow condensation heat transfer performance of natural and emerging synthetic refrigerants. Int. J. Refrig 132, 293–321 (2021). https://doi.org/10.1016/j.ijrefrig.2021.09.014

    Article  CAS  Google Scholar 

  8. Lemmon, E.W.; Huber, M.L.; McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0. Physical and Chemical Properties (2010)

  9. Kumar, R.; Varma, H.K.; Mohanty, B.; Agrawal, K.N.: Condensation of R-134a vapor over single horizontal circular integral-fin tubes with trapezoidal fins. Heat Transfer Eng. 21, 29–39 (2000). https://doi.org/10.1080/014576300271004

    Article  ADS  CAS  Google Scholar 

  10. Kumar, R.; Gupta, A.; Vishvakarma, S.: Condensation of R-134a vapour over single horizontal integral-fin tubes: effect of fin height. Int. J. Refrig 28, 428–435 (2005)

    Article  CAS  Google Scholar 

  11. Jung, D.; Kim, C.B.; Hwang, S.M.; Kim, K.K.: Condensation heat transfer coefficients of R22, R407C, and R410A on a horizontal plain, low fin, and turbo-C tubes. Int. J. Refrig 26, 485–491 (2003). https://doi.org/10.1016/S0140-7007(02)00161-5

    Article  CAS  Google Scholar 

  12. Park, K.J.; Jung, D.: Optimum fin density of low fin tubes for the condensers of building chillers with HCFC123. Energy Convers Manag. 49, 2090–2094 (2008). https://doi.org/10.1016/j.enconman.2008.02.005

    Article  CAS  Google Scholar 

  13. Park, K.J.; Kang, D.G.; Jung, D.: Condensation heat transfer coefficients of R1234yf on plain, low fin, and Turbo-C tubes. Int. J. Refrig 34, 317–321 (2011). https://doi.org/10.1016/j.ijrefrig.2010.06.010

    Article  CAS  Google Scholar 

  14. Ali, H.M.; Briggs, A.: Condensation of R-113 on pin-fin tubes: Effect of circumferential pin thickness and spacing. Heat Transfer Eng. 33, 205–212 (2012). https://doi.org/10.1080/01457632.2011.548296

    Article  ADS  CAS  Google Scholar 

  15. Ali, H.M.; Briggs, A.: Condensation of ethylene glycol on pin-fin tubes: effect of circumferential pin spacing and thickness. Appl Therm Eng. 49, 9–13 (2012)

    Article  CAS  Google Scholar 

  16. Ali, H.M.; Briggs, A.: Enhanced condensation of ethylene glycol on single pin-fin tubes: Effect of pin geometry. J. Heat Transf. 134, (2012). https://doi.org/10.1115/1.4004714

  17. Baisar, M.; Briggs, A.: Condensation of steam on pin-fin tubes: effect of circumferential pin thickness and spacing. Heat Transfer Eng. 30, 1017–1023 (2009). https://doi.org/10.1080/01457630902921014

    Article  ADS  CAS  Google Scholar 

  18. Ali, H.M.; Abubaker, M.: Effect of circumferential pin thickness on condensate retention as a function of vapor velocity on horizontal pin-fin tubes. Appl Therm Eng. 91, 245–251 (2015). https://doi.org/10.1016/j.applthermaleng.2015.08.025

    Article  CAS  Google Scholar 

  19. Ali, H.M.; Briggs, A.: Condensation heat transfer on pin-fin tubes: effect of thermal conductivity and pin height. Appl Therm Eng. 60, 465–471 (2013). https://doi.org/10.1016/j.applthermaleng.2012.08.020

    Article  CAS  Google Scholar 

  20. Ji, W.T.; Numata, M.; He, Y.L.; Tao, W.Q.: Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes. Int J Heat Mass Transf. 86, 744–754 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.020

    Article  CAS  Google Scholar 

  21. Sajjan, S.K.; Kumar, R.; Gupta, A.: Experimental investigation during condensation of R-600a vapor over single horizontal integral-fin tubes. Int J Heat Mass Transf. 88, 247–255 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.079

    Article  CAS  Google Scholar 

  22. Ji, W.-T.; Mao, S.-F.; Chong, G.-H.; Zhao, C.-Y.; Zhang, H.; Tao, W.-Q.: Numerical and experimental investigation on the condensing heat transfer of R134a outside plain and integral-fin tubes. Appl Therm Eng. 159, 113878 (2019)

    Article  CAS  Google Scholar 

  23. Ji, W.T.; Lu, X.D.; Yu, Q.N.; Zhao, C.Y.; Zhang, H.; Tao, W.Q.: Film-wise condensation of R-134a, R-1234ze(E) and R-1233zd(E) outside the finned tubes with different fin thickness. Int J Heat Mass Transf. 146, (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118829

  24. Jung, D.; Chae, S.; Bae, D.; Oho, S.: Condensation heat transfer coefficients of flammable refrigerants. In: International Journal of Refrigeration. pp. 314–317 (2004)

  25. Yun, R.; Heo, J.; Kim, Y.: Film condensation heat transfer characteristics of R134a on horizontal stainless steel integral-fin tubes at low heat transfer rate. Int. J. Refrig 32, 865–873 (2009). https://doi.org/10.1016/j.ijrefrig.2008.12.001

    Article  CAS  Google Scholar 

  26. Fernández-Seara, J.; Uhía, F.J.; Diz, R.: Experimental analysis of ammonia condensation on smooth and integral-fin titanium tubes. Int. J. Refrig 32, 1140–1148 (2009). https://doi.org/10.1016/j.ijrefrig.2009.01.026

    Article  CAS  Google Scholar 

  27. Fernández-Seara, J.; Uhía, F.J.; Diz, R.; Dopazo, A.: Condensation of R-134a on horizontal integral-fin titanium tubes. Appl Therm Eng. 30, 295–301 (2010). https://doi.org/10.1016/j.applthermaleng.2009.09.007

    Article  CAS  Google Scholar 

  28. Ji, W.T.; Chong, G.H.; Zhao, C.Y.; Zhang, H.; Tao, W.Q.: Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes. Int. J. Refrig 93, 259–268 (2018). https://doi.org/10.1016/j.ijrefrig.2018.06.013

    Article  CAS  Google Scholar 

  29. Zhang, D.C.; Ji, W.T.; Tao, W.Q.: Condensation heat transfer of HFC134a on horizontal low thermal conductivity tubes. Int. Commun. Heat Mass Transfer 34, 917–923 (2007). https://doi.org/10.1016/j.icheatmasstransfer.2007.03.022

    Article  CAS  Google Scholar 

  30. Fernández-Seara, J.; Uhía, F.J.; Diz, R.; Dopazo, J.A.: Vapour condensation of R22 retrofit substitutes R417A, R422A and R422D on CuNi turbo C tubes. Int. J. Refrig 33, 148–157 (2010). https://doi.org/10.1016/j.ijrefrig.2009.09.006

    Article  CAS  Google Scholar 

  31. Ji, W.T.; Zhao, C.Y.; Zhang, D.C.; Li, Z.Y.; He, Y.L.; Tao, W.Q.: Condensation of R134a outside single horizontal titanium, cupronickel (B10 and B30), stainless steel and copper tubes. Int J Heat Mass Transf. 77, 194–201 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.050

    Article  CAS  Google Scholar 

  32. Zhao, C.Y.; Ji, W.T.; Jin, P.H.; Zhong, Y.J.; Tao, W.Q.: The influence of surface structure and thermal conductivity of the tube on the condensation heat transfer of R134a and R404A over single horizontal enhanced tubes. Appl Therm Eng. 125, 1114–1122 (2017). https://doi.org/10.1016/j.applthermaleng.2017.06.133

    Article  CAS  Google Scholar 

  33. Gebauer, T.; Al-Badri, A.R.; Gotterbarm, A.; Hajal, J.E.; Leipertz, A.; Fröba, A.P.: Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane. Int. J. Heat Mass Transf. 56, 516–524 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.049

    Article  CAS  Google Scholar 

  34. Al-Badri, A.R.; Bär, A.; Gotterbarm, A.; Rausch, M.H.; Fröba, A.P.: The influence of fin structure and fin density on the condensation heat transfer of R134a on single finned tubes and in tube bundles. Int. J. Heat Mass Transf. 100, 582–589 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.087

    Article  CAS  Google Scholar 

  35. Ji, W.T.; Zhao, C.Y.; Lofton, J.; Li, Z.Y.; Zhang, D.C.; He, Y.L.; Tao, W.Q.: Condensation of R134a and R22 in shell and tube condensers mounted with high-density low-fin tubes. J Heat Transfer. 140 (2018). https://doi.org/10.1115/1.4040083

  36. Belghazi, M.; Bontemps, A.; Marvillet, C.: Condensation heat transfer on enhanced surface tubes: experimental results and predictive theory. J. Heat Transf. 124, 754–761 (2002). https://doi.org/10.1115/1.1459728

    Article  CAS  Google Scholar 

  37. Al-Badri, A.R.; Gebauer, T.; Leipertz, A.; Fröba, A.P.: Element by element prediction model of condensation heat transfer on a horizontal integral finned tube. Int. J. Heat Mass Transf. 62, 463–472 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.015

    Article  CAS  Google Scholar 

  38. Adamek, T.; Webb, R.L.: Prediction of film condensation on horizontal integral fin tubes. Int. J. Heat Mass Transf. 33, 1721–1735 (1990). https://doi.org/10.1016/0017-9310(90)90027-R

  39. Moffat, R.J.: Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1, 3–17 (1988). https://doi.org/10.1016/0894-1777(88)90043-X

    Article  ADS  Google Scholar 

  40. Gürbüz, H.; Akçay, H.; Aldemir, M.; Akçay, İH.; Topalcı, Ü.: The effect of euro diesel-hydrogen dual fuel combustion on performance and environmental-economic indicators in a small UAV turbojet engine. Fuel 306, 121735 (2021)

    Article  Google Scholar 

  41. Cheng, W.Y.; Wang, C.: chuan: condensation of R-134a on enhanced tubes. ASHRAE Trans. 100, 809–817 (1994)

    Google Scholar 

  42. White, R.E.: Condensation of refrigerant vapors—apparatus and film coefficients for Freon-12. Trans. Am. Soc. Mech. Eng. 70, 689–693 (1948)

    Article  CAS  Google Scholar 

  43. Wilson, E.E.: A basis for rational design of heat transfer apparatus. The J. Am. Soc. Mech. Engrs. 37, 546–551 (1915)

  44. Briggs, D.E.; Young, E.H.: Modified Wilson plot techniques for obtaining heat transfer correlations for shell and tube heat exchangers. In: Chemical Engineering Progress Symposium Series. pp. 35–45. AIChE, New York, NY (1969)

  45. Gnielinski, V.: New equations for heat and mass transfer in the turbulent flow in pipes and channels. NASA STI/recon Tech. Rep. A 41, 8–16 (1975)

    CAS  Google Scholar 

  46. Petukhov, B.S.: Theoretical calculation of heat exchange and frictional resistance in turbulent flow in tubes of an incompressible fluid with variable physical properties. Teplofiz. Vysok. Temperatur (High Temperature Heat Physics) 1 (1963)

  47. Ko, J.W.; Jeon, D.S.; Kim, Y.L.; Kim, S.C.: Experimental study on film condensation heat transfer characteristics of R1234ze(E) and R1233zd(E) over horizontal plain tubes. J. Mech. Sci. Technol. 32, 527–534 (2018). https://doi.org/10.1007/s12206-017-1254-2

    Article  Google Scholar 

  48. Park, K.-J.; Jung, D.: Condensation heat transfer coefficients of HCFC22, R410A, R407C and HFC134a at various temperatures on a plain horizontal tube. J. Mech. Sci. Technol. 21, 804–813 (2007)

    Article  Google Scholar 

  49. Chen, T.; Wu, D.: Enhancement in heat transfer during condensation of an HFO refrigerant on a horizontal tube with 3D fins. Int. J. Therm. Sci. 124, 318–326 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.10.022

    Article  Google Scholar 

  50. Wanniarachchi, A.S.; Marto, P.J.; Rose, J.W.: Film condensation of steam on horizontal finned tubes: effect of fin spacing. J. Heat Transf. 108, 960–966 (1986). https://doi.org/10.1115/1.3247041

    Article  CAS  Google Scholar 

  51. Honda, H.; Nozu, S.: A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes. J Heat Transfer. 109, 218–225 (1987). https://doi.org/10.1115/1.3248046

    Article  CAS  Google Scholar 

  52. Fitzgerald, C.L.; Briggs, A.; Rose, J.W.; Wang, H.S.: Effect of vapour velocity on condensate retention between fins during condensation on low-finned tubes. Int. J. Heat Mass Transf. 55, 1412–1418 (2012). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.09.063

    Article  CAS  Google Scholar 

  53. Park, K.-J.; Jung, D.: Condensation heat transfer coefficients of flammable refrigerants on various enhanced tubes. J. Mech. Sci. Technol. 19, 1957–1963 (2005)

    Article  Google Scholar 

  54. Beatty, K.O.; Katz, D.L.: Condensation of vapors on outside of finned tubes. Chem. Eng. Prog. 44, 55–70 (1948)

    CAS  Google Scholar 

  55. Owen, R.G.; Sardesai, R.G.; Smith, R.A.; Lee, W.C.: Gravity Controlled 524 Condensation on Low Integral Fin Tubes. In: Condenser: Theory and Practice, I. Chem. E. 525 Symposium, Serial. pp. 415–428 (1983)

  56. Webb, R.L.; Rudy, T.M.; Kedzierski, M.A.: Prediction of the condensation coefficient on horizontal integral-fin tubes. J. Heat Transf. 107, 369–376 (1985). https://doi.org/10.1115/1.3247424

    Article  CAS  Google Scholar 

  57. Kumar, R.; Varma, H.K.; Mohanty, B.; Agrawal, K.N.: Prediction of heat transfer coefficient during condensation of water and R-134a on single horizontal integral-fin tubes. Int. J. Refrig 25, 111–126 (2002)

    Article  CAS  Google Scholar 

  58. Rudy, T.M.; Webb, R.L.: An analytical model to predict condensate retention on horizontal integral-fin tubes (1985)

Download references

Acknowledgements

We would like to express our heartfelt appreciation to our institute, IIT Roorkee, for providing experimental facilities and unending support.

Author information

Authors and Affiliations

Authors

Contributions

IMM worked from the research idea generation to involvement in the experimental test assessment. He was also involved in the preparation of the research article. RK established a plan for the scientific manipulation of the research idea and was involved in the experimental data validation and preparation of the research article.

Corresponding author

Correspondence to Ibrahim Mustefa Mohammed.

Ethics declarations

Conflict of interest

This work was not prepared with the help of any funds, grants, or other resources. In addition, there was no conflict of interest among the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, I.M., Kumar, R. Experimental Study of the Condensation of Retrofit Refrigerant R32 Over Single Horizontal Plain and 2D Low-Finned Integral Tubes. Arab J Sci Eng 49, 1931–1953 (2024). https://doi.org/10.1007/s13369-023-08080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08080-5

Keywords

Navigation