Skip to main content
Log in

Digital Image Correlation to Characterize the Tensile Behavior of the Polypropylene and Forta-Ferro Fiber-Reinforced Concrete

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study aims to compare the effects of adding macro- and micro-fiber on the tensile strength of concrete, as well as investigate the efficiency of the digital image correlation (DIC) method in detecting crack propagation and measuring cracks’ width. For this purpose, 150 mm3 cubic specimens were fabricated in seven different mix designs, including one control specimen, specimens containing 0.2%, 0.3%, and 0.4% polypropylene (PP) fibers, and 0.1% and 0.2% Forta-Ferro (FF) fibers. This study employed the Brazilian test as an indirect tensile test. Furthermore, the DIC method was utilized to observe the initiation and propagation of tensile cracks and measure their width. The experimental results showed that the tensile splitting strength increases by up to 13% and 20%, respectively, when even a low percentage of PP/FF as micro/macro-fibers is added. However, the usage of FF fibers leads to a more significant improvement in mechanical properties. Moreover, the effect of adding fibers on the deflection at the peak load was compared, and it was demonstrated that the deflection of the specimens at the peak load increased by approximately 10% and 20% for PP and FF specimens, respectively. In addition, the DIC method revealed a decline in tensile crack width when adding PP and FF fibers, while the FF fibers were more effective than the PP ones in preventing tensile crack propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FF:

Forta-Ferro

PP:

Polypropylene

DIC:

Digital image correlation

f ct :

Tensile splitting strength

W/C :

Water-to-cement ratio

SP:

Super-plasticizer

PC:

Plain concrete (control specimen)

ROI:

Region of interest

exx:

Transverse strain

Uxx:

Horizontal displacement

References

  1. Emamian, S.A.; Eskandari-Naddaf, H.: Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by ANN and GEP. Constr. Build. Mater. 218, 8–27 (2019)

    Google Scholar 

  2. Kooshkaki, A.; Eskandari-Naddaf, H.: Effect of porosity on predicting compressive and flexural strength of cement mortar containing micro and nano-silica by multi-objective ANN modeling. Constr. Build. Mater. 212, 176–191 (2019)

    Google Scholar 

  3. Swamy, R.: High-strength concrete-material properties and structural behavior. Spec. Publ. 87, 119–146 (1985)

    Google Scholar 

  4. Boulekbache, B.; Hamrat, M.; Chemrouk, M.; Amziane, S.: Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation. Mater. Struct. 48(8), 2713–2726 (2015)

    Google Scholar 

  5. Aliha, M.; Razmi, A.; Mousavi, A.: Fracture study of concrete composites with synthetic fibers additive under modes I and III using ENDB specimen. Constr. Build. Mater. 190, 612–622 (2018)

    Google Scholar 

  6. Hasan-Nattaj, F.; Nematzadeh, M.: The effect of forta-ferro and steel fibers on mechanical properties of high-strength concrete with and without silica fume and nano-silica. Constr. Build. Mater. 137, 557–572 (2017)

    Google Scholar 

  7. Chowdhury, M.; Islam, M.; Ibna Zahid, Z.: Finite element modeling of compressive and splitting tensile behavior of plain concrete and steel fiber reinforced concrete cylinder specimens. Adv. Civ. Eng. 2016 (2016)

  8. Melenka, G.W.; Carey, J.P.: Evaluation of fiber reinforced cement using digital image correlation. PLoS ONE 10(6), e0128644 (2015)

    Google Scholar 

  9. Grzymski, F.; Musiał, M.; Trapko, T.: Mechanical properties of fibre reinforced concrete with recycled fibres. Constr. Build. Mater. 198, 323–331 (2019)

    Google Scholar 

  10. Hassanpour, M.; Shafigh, P.; Mahmud, H.B.: Lightweight aggregate concrete fiber reinforcement–a review. Constr. Build. Mater. 37, 452–461 (2012)

    Google Scholar 

  11. Neville, A.M.; Neville, A.M.: Properties of Concrete, 4th edn., p. 844. Essex, Longman Group Ltd (1995)

    MATH  Google Scholar 

  12. Dalgaç, Ş; Karadağ, F.; Ünal, E.; Özkaner, V.; Bakır, M.; Akgöl, O.; Sevim, U.K.; Delihacıoğlu, K.; Öztürk, M.; Karaaslan, M.; Sabah, C.: Metamaterial sensor application concrete material reinforced with carbon steel fiber. Mod. Phys. Lett. B 34(10), 2050097 (2020)

    Google Scholar 

  13. Nili, M.; Afroughsabet, V.: The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete. Constr. Build. Mater. 24(6), 927–933 (2010)

    Google Scholar 

  14. Yin, S.; Tuladhar, R.; Shanks, R.A.; Collister, T.; Combe, M.; Jacob, M.; Tian, M.; Sivakugan, N.: Fiber preparation and mechanical properties of recycled polypropylene for reinforcing concrete. J. Appl. Polym. Sci. 132(16) (2015)

  15. Soutsos, M.; Le, T.; Lampropoulos, A.: Flexural performance of fibre reinforced concrete made with steel and synthetic fibres. Constr. Build. Mater. 36, 704–710 (2012)

    Google Scholar 

  16. Habib, A.; Begum, R.; Alam, M.M.: Mechanical properties of synthetic fibers reinforced mortars. Int. J. Sci. Eng. Res. 4(4), 923–927 (2013)

    Google Scholar 

  17. Buratti, N.; Mazzotti, C.; Savoia, M.J.C.; Materials, B.: Post-cracking behaviour of steel and macro-synthetic fibre-reinforced concretes. Constr. Build. Mater. 25(5), 2713–2722 (2011)

    Google Scholar 

  18. Brandt, A.M.J.C.: Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 86(1–3), 3–9 (2008)

    Google Scholar 

  19. Arafa, M.; Alqedra, M.; Almassri, H.: Effect of forta-ferro fibers on fresh and mechanical properties of ultra high performance self compacting concrete. Int. J. Eng. Techn. Res. 1, 43–47 (2013)

    Google Scholar 

  20. Afroughsabet, V.; Ozbakkaloglu, T.: Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 94, 73–82 (2015)

    Google Scholar 

  21. Deb, S.; Mitra, N.; Majumder, S.B.; Maitra, S.: Improvement in tensile and flexural ductility with the addition of different types of polypropylene fibers in cementitious composites. Constr. Build. Mater. 180, 405–411 (2018)

    Google Scholar 

  22. Neville, A.M.: Properties of Concrete. Longman, London (1995)

    Google Scholar 

  23. Carneiro, F.; Barcellos, A.: Résistance à la traction des bétons. Bulletin Rilem 1(13), 97–108 (1953)

    Google Scholar 

  24. ASTM C496–90 (1991) Standard test method for splitting tensile strength of cylindrical concrete specimens, Annual Book ASTM Standards 4(04.02):266–269, ASTM International, 1991.

  25. ISO 4108–1980 (E) (1980). Concrete determination of tensile splitting strength of test specimen. International Organization for Standardization, 1980.

  26. BS 1881 Part 117 (1983) Testing concrete part 117: Method for determination of tensile splitting strength. British Standards Institution, 1983.

  27. Belrhiti, Y.; Dupre, J.; Pop, O.; Germaneau, A.; Doumalin, P.; Huger, M.; Chotard, T.: Combination of Brazilian test and digital image correlation for mechanical characterization of refractory materials. J. Eur. Ceram. Soc. 37(5), 2285–2293 (2017)

    Google Scholar 

  28. Zhu, D.; Mobasher, B.; Rajan, S.: Non-contacting strain measurement for cement-based composites in dynamic tensile testing. Cement Concr. Compos. 34(2), 147–155 (2012)

    Google Scholar 

  29. Pan, B.; Qian, K.; Xie, H.; Asundi, A.: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol. 20(6), 062001 (2009)

    Google Scholar 

  30. Zhang, X.; Chen, J.; Wang, Z.; Zhan, N.; Wang, R.: Digital image correlation using ring template and quadrilateral element for large rotation measurement. Opt. Lasers Eng. 50(7), 922–928 (2012)

    Google Scholar 

  31. Kalali, S.H.; Eskandari-Naddaf, H.; Emamian, S.A.: Assessment of fracture process in forta and polypropylene fiber-reinforced concrete using experimental analysis and digital image correlation. Front. Struct. Civ. Eng. 16(12), 1633–1652 (2022)

    Google Scholar 

  32. Sutton, M.; Wolters, W.; Peters, W.; Ranson, W.; McNeill, S.: Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1(3), 133–139 (1983)

    Google Scholar 

  33. Leplay, P.; Réthoré, J.; Meille, S.; Baietto, M.-C.: Identification of damage and cracking behaviours based on energy dissipation mode analysis in a quasi-brittle material using digital image correlation. Int. J. Fract. 171(1), 35 (2011)

    MATH  Google Scholar 

  34. Zhang, H.; Huang, G.; Song, H.; Kang, Y.: Experimental investigation of deformation and failure mechanisms in rock under indentation by digital image correlation. Eng. Fract. Mech. 96, 667–675 (2012)

    Google Scholar 

  35. Dai, X.; Yang, F.; Wang, L.; Zhang, D.; Pu, Q.; He, X.: Load capacity evaluated from fracture initiation and onset of rapid propagation for cast iron by digital image correlation. Opt. Lasers Eng. 51(9), 1092–1101 (2013)

    Google Scholar 

  36. Michel, A.; Solgaard, A.O.S.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F.: Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete. Corros. Sci. 77, 308–321 (2013)

    Google Scholar 

  37. Ghahremannejad, M.; Mahdavi, M.; Saleh, A.E.; Abhaee, S.; Abolmaali, A.: Experimental investigation and identification of single and multiple cracks in synthetic fiber concrete beams. Case Stud. Constr. Mater. 9, e00182 (2018)

    Google Scholar 

  38. Luo, X.; Zhang, S.; Li, A.; Yang, X.; Liang, Z.: Steel rebar effect on tensile and cracking behavior of UHPFRC based on direct tensile tests and digital image correlation. Cement Concr. Compos. 137, 104940 (2023)

    Google Scholar 

  39. Madadi, A.; Eskandari-Naddaf, H.; Shadnia, R.; Zhang, L.: Digital image correlation to characterize the flexural behavior of lightweight ferrocement slab panels. Constr. Build. Mater. 189, 967–977 (2018)

    Google Scholar 

  40. Quiceno Pérez, V.; Cotes Prieto, D.; Zapata Orduz, L.E.: Mechanical characterization of self-compacting steel fiber reinforced concrete using digital image correlation. Eng. Fract. Mech. 246, 107618 (2021)

    Google Scholar 

  41. Dadmand, B.; Sadaghian, H.; Khalilzadehtabrizi, S.; Pourbaba, M.; Shirdel, M.; Mirmiran, A.: Studying the compressive, tensile and flexural properties of binary and ternary fiber-reinforced UHPC using experimental, numerical and multi-target digital image correlation methods. Case Stud. Constr. Mater. 18, e01865 (2023)

    Google Scholar 

  42. Xu, H.; Wang, Z.; Shao, Z.; Cai, L.; Jin, H.; Zhang, Z.; Qiu, Z.; Rui, X.; Chen, T.: Experimental study on durability of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Constr. Build. Mater. 306, 124867 (2021)

    Google Scholar 

  43. Chen, Y.; He, Q.; Liang, X.; Chen, Z.; Li, H.: Experimental investigation on mechanical properties of steel fiber reinforced recycled aggregate concrete under uniaxial cyclic compression. Constr. Build. Mater. 387, 131616 (2023)

    Google Scholar 

  44. Alimrani, N.S.; Balazs, G.L.: Toughness and stiffness of fibre reinforced concrete in terms of shear capacity. Constr. Build. Mater. 389, 131711 (2023)

    Google Scholar 

  45. Zhang, C.; Zhu, Z.; Wang, S.; Zhang, J.: Macro-micro mechanical properties and reinforcement mechanism of alkali-resistant glass fiber-reinforced concrete under alkaline environments. Constr. Build. Mater. 368, 130365 (2023)

    Google Scholar 

  46. C.J.P. ASTM, PA: American Society for Testing, Materials, Standard specification for concrete aggregates (2003).

  47. Rocco, C.; Guinea, G.; Planas, J.; Elices, M.: Review of the splitting-test standards from a fracture mechanics point of view. Cem. Concr. Res. 31(1), 73–82 (2001)

    Google Scholar 

  48. Madadi, A.; Eskandari-Naddaf, H.; Shadnia, R.; Zhang, L.: Characterization of ferrocement slab panels containing lightweight expanded clay aggregate using digital image correlation technique. Constr. Build. Mater. 180, 464–476 (2018)

    Google Scholar 

  49. Luković, M.; Hordijk, D.A.; Huang, Z.; Schlangen, E.: Strain Hardening Cementitious Composite (SHCC) for crack width control in reinforced concrete beams. Heron 64(1/2), 181 (2019)

    Google Scholar 

  50. Gehri, N.; Mata-Falcón, J.; Kaufmann, W.: Automated crack detection and measurement based on digital image correlation. Constr. Build. Mater. 256, 119383 (2020)

    Google Scholar 

  51. Bado, M.F.; Casas, J.R.: A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors (2021)

  52. Banthia, N.; Nandakumar, N.: Crack growth resistance of concrete reinforced with a low volume fraction of polymericm fiber. J. Mater. Sci. Lett. 20(17), 1651–1653 (2001)

    Google Scholar 

  53. Skarżyński, Ł; Syroka, E.; Tejchman, J.: Measurements and calculations of the width of the fracture process zones on the surface of notched concrete beams. Strain 47, e319–e332 (2011)

    Google Scholar 

  54. Hamrat, M.; Boulekbache, B.; Chemrouk, M.; Amziane, S.: Flexural cracking behavior of normal strength, high strength and high strength fiber concrete beams, using Digital Image Correlation technique. Constr. Build. Mater. 106, 678–692 (2016)

    Google Scholar 

  55. Soroushian, P.; Elyamany, H.; Tlili, A.; Ostowari, K.: Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers. Cement Concr. Compos. 20(1), 67–78 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Eskandari-Naddaf.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalali, S.H., Eskandari-Naddaf, H. & Kooshkaki, A. Digital Image Correlation to Characterize the Tensile Behavior of the Polypropylene and Forta-Ferro Fiber-Reinforced Concrete. Arab J Sci Eng 48, 14017–14027 (2023). https://doi.org/10.1007/s13369-023-08051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08051-w

Keywords

Navigation