Skip to main content

Advertisement

Log in

Carrier-Based Variable Frequency PWM Technique for PMSM Drives to Achieve Dispersed Spectrum and Extended Low-Speed Operation Capability

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Constant switching frequency pulse width modulation (PWM) schemes introduce harmonics in the inverter’s output voltage and current which are concentrated at frequencies close to the switching frequency and its multiples. This peaking in the current and voltage harmonic spectrum results in vibration and acoustic noise in AC motor drives. One way to alleviate these problems is by spreading the harmonic spectrum and reducing the magnitude of dominant harmonic components using variable switching frequency schemes. The key objective of this paper is to introduce a novel trapezoidal variation based variable frequency PWM switching strategy to spread out the harmonic spectrum, with reduced current THD even during no-load low-speed operation. This paper also proposes a modified switched DC cell inverter to achieve DC voltage control to enhance the THD reduction. The presented strategy achieves a maximum of 42.2\(\%\) reduction in low-speed THD compared to linear sub-cycle period variable frequency PWM, a 46\(\%\)reduction in dominant harmonics compared to conventional space vector PWM, and a dispersion index of 1.61, demonstrating its competency as a promising variable switching frequency scheme. The suggested techniques are simulated using MATLAB/Simulink on a vector-controlled Permanent Magnet Synchronous Motor (PMSM) drive and are validated experimentally on a 1.07 kW PMSM drive with a WAVECT-FPGA controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(\tilde{\psi }\) :

Mean square flux ripple

\(\tilde{\psi _q}\) :

Mean square q-axis flux ripple

\(\tilde{\psi _d}\) :

Mean square d-axis flux ripple

\(V_\textrm{ref}\) :

Per unit reference voltage vector

\(\alpha \) :

Angle of \(V_\textrm{ref}\)

\(T_s\) :

Sub-cycle period

\(\tilde{I_d}\), \(\tilde{I_q}\) :

, d and q-axis current ripple

\(\tilde{V_d}\), \(\tilde{V_q}\) :

, d and q-axis voltage ripple

\(T_s(\alpha )\) :

Sub-cycle period with respect to \(\alpha \)

\(T_s(\textrm{min})\), \(T_s(\textrm{max})\) :

, Minimum and maximum \(T_s\)

\(T_s(\textrm{avg})\) :

Average value of \(T_s\)

\(I_{s}\) :

Current through the switch

\(V_\textrm{on}\) :

Saturation voltage

\(R_\textrm{on}\) :

On-state resistance

\(P_\textrm{sw}\) :

Switching power loss

\(P_\textrm{cond}\) :

Conduction loss

\(P_\textrm{Loss}\) :

Total power loss

\(E_\textrm{sub}\) :

Energy loss in a sub-cycle

\(P_0\) :

Mechanical power developed

\(\eta _i\) :

Inverter efficiency

\(\eta _m\) :

Motor efficiency

\(m_a\) :

Modulation index

\(V_\textrm{dc}\) :

DC link voltage

\(V_\mathrm{LL(rms)}\) :

Rms value of the fundamental line voltage

References

  1. Kim, K.S.; Jung, Y.G.; Lim, Y.C.: A new hybrid random PWM scheme. IEEE Trans. Power Electron. 24(1), 192–200 (2009). https://doi.org/10.1109/TPEL.2008.2006613

    Article  Google Scholar 

  2. Jacob, B.; Baiju, M.R.: Spread spectrum modulation scheme for two-level inverter using vector quantised space vector-based pulse density modulation. IET Electr. Power Appl. 5(7), 589–596 (2011). https://doi.org/10.1049/iet-epa.2010.0260

    Article  Google Scholar 

  3. Binojkumar, A.C.; Prasad, J.S.; Narayanan, G.: Experimental investigation on the effect of advanced bus-clamping pulsewidth modulation on motor acoustic noise. IEEE Trans. Ind. Electron. 60(2), 433–439 (2013). https://doi.org/10.1109/TIE.2012.2190371

    Article  Google Scholar 

  4. Lai, Y.S.; Chang, Y.T.; Chen, B.Y.: Novel random-switching PWM technique with constant sampling frequency and constant inductor average current for digitally controlled converter. IEEE Trans. Ind. Electron. 60(8), 3126–3135 (2013). https://doi.org/10.1109/TIE.2012.2201436

    Article  Google Scholar 

  5. Peyghambari, A.; Dastfan, A.; Ahmadyfard, A.: Strategy for switching period selection in random pulse width modulation to shape the noise spectrum. IET Power Electron. 8(4), 517–523 (2015). https://doi.org/10.1049/iet-pel.2014.0118

    Article  Google Scholar 

  6. Boudouda, A.; Boudjerda, N.; El Khamlichi Drissi, K.; Kerroum, K.: Combined random space vector modulation for a variable speed drive using induction motor. Electr. Eng. 98(1), 1–15 (2016)

    Article  Google Scholar 

  7. Jadeja, R.; Ved, A.D.; Chauhan, S.K.; Trivedi, T.: A random carrier frequency pwm technique with a narrowband for a gridconnected solar inverter. Electr. Eng. 102(3), 1755–1767 (2020)

    Article  Google Scholar 

  8. Mao, X.; Ayyanar, R.; Krishnamurthy, H.K.: Optimal variable switching frequency scheme for reducing switching loss in single-phase inverters based on time-domain ripple analysis. IEEE Trans. Power Electron. 24(4), 991–1001 (2009). https://doi.org/10.1109/TPEL.2008.2009635

    Article  Google Scholar 

  9. Jiang, D.; Wang, F.F.: Variable switching frequency PWM for three-phase converters based on current ripple prediction. IEEE Trans. Power Electron. 28(11), 4951–4961 (2013). https://doi.org/10.1109/TPEL.2013.2240701

    Article  Google Scholar 

  10. Ruiz-Gonzalez, A.; Meco-Gutierrez, M.J.; Perez-Hidalgo, F.; Vargas-Merino, F.; Heredia-Larrubia, J.R.: Reducing acoustic noise radiated by inverter-fed induction motors controlled by a new PWM strategy. IEEE Trans. Ind. Electron. 57(1), 228–236 (2010). https://doi.org/10.1109/TIE.2009.2031185

    Article  Google Scholar 

  11. Ibrahim, A.; Sujod, M.Z.: Variable switching frequency hybrid PWM technique for switching loss reduction in a three-phase two-level voltage source inverter. Measurement 151, 107192 (2020). https://doi.org/10.1016/j.measurement.2019.107192

    Article  Google Scholar 

  12. Chen, J.; Sha, D.; Zhang, J.: Current ripple prediction and DPWM-based variable switching frequency control for full ZVS range three-phase inverter. IEEE Trans. Ind. Electron. 68(2), 1412–1422 (2020). https://doi.org/10.1109/TIE.2020.2967741

    Article  Google Scholar 

  13. Chen, J.; Han, Q.; Han, W.; Xin, Z.: Current ripple prediction and DPWM based variable switching frequency control for full ZVS range two parallel interleaved three-phase inverters. IEEE Trans. Ind. Electron. 69(1), 420–428 (2021). https://doi.org/10.1109/TIE.2021.3050379

    Article  Google Scholar 

  14. Zhu, X.; Wang, H.; Zhang, W.; Wang, H.; Deng, X.; Tang, W.; Yue, X.: A passive variable switching frequency SPWM concept and analysis for DCAC Converter. IEEE Trans. Power Electron. 37(5), 5524–5534 (2021). https://doi.org/10.1109/TPEL.2021.31231902009635

    Article  Google Scholar 

  15. Khalid, M.; Mohan, A.; Binojkumar, A.C.: Performance analysis of vector controlled PMSM Drive modulated with Sinusoidal PWM and space vector PWM. In: IEEE International Power and Renewable Energy Conference, IPRECON. 1-6 (2020). https://doi.org/10.1109/IPRECON49514.2020.9315210

  16. Khalid, M.; Mohan, A.; Binojkumar, A.C.: Evaluation and validation of performance parameters of a permanent magnet synchronous motor drive system with real-time simulator. In: International Conference on Communication, Control and Information Sciences (ICCISc). 1, 1-7 (2021). https://doi.org/10.1109/ICCISc52257.2021.9484895

  17. Mohan, A.; Khalid, M.; Binojkumar, A.C.: Performance analysis of permanent magnet synchronous motor under DTC and space vector-based DTC schemes with MTPA control. In: International Conference on Communication, Control and Information Sciences (ICCISc). 1, 157- 171 (2021).https://doi.org/10.1109/ICCISc52257.2021.9484869

  18. Mohan, A.; Khalid, M.; Binojkumar, A. C.: An investigation into the applications of real-time simulator in experimental validation of PMSM-based electric drive system. In: Advances in Electrical and Computer Technologies, Springer, Singapore. 1091-1107 (2022)

  19. Pindoriya, R.M.; Rajpurohit, B.S.; Kumar, R.: A novel application of harmonics spread spectrum technique for acoustic noise and vibration reduction of PMSM Drive. IEEE Access. 8, 103273–103284 (2020). https://doi.org/10.1109/ACCESS.2020.2999336

    Article  Google Scholar 

  20. Pindoriya, R.M.; Yadav, A.K.; Rajpurohit, B.S.; Kumar, R.: A novel application of random hysteresis current control technique for acoustic noise and vibration reduction of PMSM drive. IEEE Ind. Appl. Soc. Annu. Meet. 56(5), 5511–5522 (2020). https://doi.org/10.1109/IAS44978.2020.9334818

  21. Wang, Y.; Liu, J.; Lu, B.; Wang, M.: A novel discrete hybrid dual random SVPWM scheme for reducing PMSM harmonic intensity. IEEE/ASME Trans. Mechatron. (2022)

  22. Ruan, Z.; Song, W.; Zhao, L.; Zhang, Y.; Guo, Y.: A variable switching frequency space vector pulse width modulation control strategy of induction Motor drive System with torque ripple prediction. IEEE Trans. Energy Convers (2023)

  23. Yunus, S.; Ming, W.; Ugalde-Loo, C. E.: Adaptive variable switching frequency control for SiC-based PMSM drive systems. In: IECON-48th Annual Conference of the IEEE Industrial Electronics Society. 1-6 (2022)

  24. Liu, S.; Liu, C.: Direct harmonic current control scheme for dual three-phase PMSM drive system. IEEE Trans. Power Electron. 36(10), 11647–11657 (2021). https://doi.org/10.1109/TPEL.2021.3069862

    Article  Google Scholar 

  25. Zhou, S.; Liu, K.; Hu, W.; Zhang, D.; Huang, C.; Chen, Y.: Inverter harmonic suppression for permanent magnet synchronous machine drives based on discontinuous SVPWM With variable switching frequency. IEEE Trans. Transp. Electrif. (2022)

  26. Guo, X.; Jiang, Z.; Qiu, S.; Zhang, C.; Liu, J.: Research on vibration suppression of permanent magnet synchronous motor based on extended random depth PWM modulation technology. In: 9th Frontier Academic Forum of Electrical Engineering, springer Singapore. 2, 659-668 (2021)

  27. Kumar, A.C.; Narayanan, G.: Variable- switching frequency PWM technique for induction motor drive to spread acoustic noise spectrum with reduced current ripple. IEEE Trans. Ind. Appl. 52(5), 3927–3938 (2016). https://doi.org/10.1109/TIA.2016.2561259

    Article  Google Scholar 

  28. Li, J.; Song, W.; Yue, H.; Sun, N.; Ma, C.; Feng, R.: An improved MPC with reduced CMV and current distortion for PMSM drives under variable DC-bus voltage condition in electric vehicles. IEEE Trans. Power Electron. 38, 5167–5177 (2022)

    Article  Google Scholar 

  29. Narayanan, G.; Ranganathan, V.: Analytical evaluation of harmonic distortion in pwm ac drives using the notion of stator flux ripple. IEEE Trans. Power Electron. 20(2), 466–474 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank APJ Abdul Kalam Technological University (KTU), Kerala, India, for supporting this work.

Funding

No funds, grants, or other support was received for the conduct of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meera Khalid.

Ethics declarations

Competing Interest

On behalf of all authors, the corresponding author states that the authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, M., Mohan, A. & Binojkumar, A.C. Carrier-Based Variable Frequency PWM Technique for PMSM Drives to Achieve Dispersed Spectrum and Extended Low-Speed Operation Capability. Arab J Sci Eng 48, 15045–15061 (2023). https://doi.org/10.1007/s13369-023-08013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-08013-2

Keywords

Navigation