Skip to main content
Log in

Experimental and Computational Studies of Two Cu (II) and Zn (II) Coordination Polymers Based on Acyclic Cryptate-Bis(1H-1,2,4-Triazole) as Promising Corrosion Inhibitors in Molar HCl Medium

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The inhibition potential of two new 1D coordination polymers (CP), CuL2(NO3)2 (C1) and ZnL2(BF4)2 (C2), and their cryptate-bis(1H-1,2,4-triazole)-based ligand (L1) against the corrosion of mild steel (MS) in molar hydrochloric acid medium was evaluated by employing the weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques. In addition, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDS) was used to assess the surface of the steel before and after corrosion. UV–visible spectroscopy was used to examine the gravimetric solution, and to fully understand the inhibitory effect, we employed quantum chemical descriptors and Monte Carlo simulation. Based on the outcomes of the electrochemical and computational research, combined with characterization of the metal surface morphology, both metal complexes were found to be highly effective compared to the parent ligand. The findings of the EIS measurements showed that at 308 K, complexes C1 and C2 retained their inhibitory efficiency at levels over 92.3%. Furthermore, these compounds are of the mixed type, and their adsorption on the MS face was found to follow the Langmuir adsorption isotherm with the free energies of adsorption of − 42.3 and − 46.2 kJ mol−1, respectively. The experimental findings were reinforced by quantum computations and computer simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.; Ramezanzadeh, B.; Mana, Y.: The effect of interlayer spacing on the inhibitor release capability of layered double hydroxide based nanocontainers. J. Clean. Prod. 251, 119676 (2020)

    Article  Google Scholar 

  2. Wang, L.; Wu, W.; Sun, W.; Yang, Z.; Wang, S.; Liu, G.: Partially dehydrated zinc hydroxide sulfate nanoplates reinforced coating for corrosion protection. J. Chem. Eng. 373, 8–22 (2019)

    Article  Google Scholar 

  3. Salhi, A.; Amhamdi, H.; El Massaoudi, M.; Azghay, I.; El Barkany, S.; Elyoussfi, A.; Ahari, M.; Bouyanzer, A.; Radi, S.; Zarrouk, A.: Preventive behavior of phenol Schiff bases on mild steel corrosion in acidic medium part A: experimental and molecular modeling approach. Chem. Data Collect. 39, 100864 (2022)

    Article  Google Scholar 

  4. Bentiss, F.; Traisnel, M.; Lagrenee, M.: The substituted 1, 3, 4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media. Corros. Sci. 42(1), 127–146 (2000)

    Article  Google Scholar 

  5. Kim, Y.W.; Kim, J.G.; Choi, D.J.: Development of a blended corrosion, scale, and microorganism inhibitor for open recirculating cooling systems. Mater. Corros. 52(9), 697–704 (2001)

    Article  Google Scholar 

  6. Moretti, G.; Guidi, F.; Grion, G.: Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid. Corros. Sci. 46(2), 387–403 (2004)

    Article  Google Scholar 

  7. Abd El-Maksoud, S.A.: The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review. Int. J. Electrochem. Sci. 3(5), 528–555 (2008)

    Google Scholar 

  8. Huong, D.Q.; Duong, T.; Nam, P.C.: Experimental and theoretical study of corrosion inhibition performance of N-phenylthiourea for mild steel in hydrochloric acid and sodium chloride solution. J. Mol. Model. 25(7), 1–15 (2019)

    Article  Google Scholar 

  9. Kaya, S.; Kaya, C.; Guo, L.; Kandemirli, F.; Tüzün, B.; Uğurlu, İ; Madkour, L.H.; Saraçoğlu, M.: Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron. J. Mol. Liq. 219, 497–504 (2016)

    Article  Google Scholar 

  10. Malinowski, S.; Jaroszyńska-Wolińska, J.; Herbert, T.: Theoretical predictions of anti-corrosive properties of THAM and its derivatives. J. Mol. Model. 24(1), 1–12 (2018)

    Article  Google Scholar 

  11. Obot, I.B.; Kaya, S.; Kaya, C.; Tüzün, B.: Density Functional Theory (DFT) modeling and Monte Carlo simulation assessment of inhibition performance of some carbohydrazide Schiff bases for steel corrosion. Phys. E: Low-Dimens. Syst. Nanostruct. 80, 82–90 (2016)

    Article  Google Scholar 

  12. Obot, I.B.; Kaya, S.; Kaya, C.; Tüzün, B.: Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches. Res. Chem. Intermed. 42(5), 4963–4983 (2016)

    Article  Google Scholar 

  13. Gribble, M.W., Jr.; Ellman, J.A.; Bergman, R.G.: Synthesis of a benzodiazepine-derived rhodium NHC complex by C−H bond activation. Organometallics 27(10), 2152–2155 (2008)

    Article  Google Scholar 

  14. Van Beusichem, M.; Farrell, N.: Activation of the trans geometry in platinum antitumor complexes. Synthesis, characterization, and biological activity of complexes with the planar ligands pyridine, N-methylimidazole, thiazole, and quinoline. Crystal and molecular structure of trans-dichlorobis (thiazole) platinum (II). Inorg. Chem. 31(4), 634–639 (1992)

    Article  Google Scholar 

  15. Houslay, M.D.; Ellory, J.C.; Smith, G.A.; Hesketh, T.R.; Stein, J.M.; Warren, G.B.; Metcalfe, J.C.: Exchange of partners in glucagon receptor-adenylate cyclase complexes. Physical evidence for the independent, mobile receptor model. Biochim. Biophys. Acta Biomembr. 467(2), 208–219 (1977)

    Article  Google Scholar 

  16. Štandeker, S.; Novak, Z.; Knez, Ž: Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J. Colloid Interface Sci. 310(2), 362–368 (2007)

    Article  Google Scholar 

  17. Whited, M.T.; Taylor, B.L.H.: Metal/organosilicon complexes: structure, reactivity, and considerations for catalysis. Comments Inorg. Chem. 40(5), 217–276 (2020)

    Article  Google Scholar 

  18. Sun, R.W.-Y.; Ma, D.-L.; Wong, E.L.-M.; Che, C.-M.: Some uses of transition metal complexes as anti-cancer and anti-HIV agents. Dalton Trans. 43, 4884–4892 (2007)

    Google Scholar 

  19. Ho, M.X.; Hudson, B.P.; Das, K.; Arnold, E.; Ebright, R.H.: Structures of RNA polymerase–antibiotic complexes. Curr. Opin. Struct. Biol. 19(6), 715–723 (2009)

    Article  Google Scholar 

  20. Zhao, Y.; Li, K.; Li, J.: Solvothermal synthesis of multifunctional coordination polymers. Zeitschrift für Naturforschung B. 65(8), 976–998 (2010)

    Article  Google Scholar 

  21. Sumrra, S.H.; Zafar, W.; Imran, M.; Chohan, Z.H.: A review on the biomedical efficacy of transition metal triazole compounds. J. Coord. Chem. 75(3–4), 293–334 (2022)

    Article  Google Scholar 

  22. Durgun, E.; Ciraci, S.; Zhou, W.; Yildirim, T.: Transition-metal-ethylene complexes as high-capacity hydrogen-storage media. Phys. Rev. Lett. 97(22), 226102 (2006)

    Article  Google Scholar 

  23. Zhang, S.-H.; Wang, J.-M.; Zhang, H.-Y.; Fan, Y.-P.; Xiao, Y.: Highly efficient electrochemiluminescence based on 4-amino-1, 2, 4-triazole Schiff base two-dimensional Zn/Cd coordination polymers. Dalton Trans. 46(2), 410–419 (2017)

    Article  Google Scholar 

  24. Devi, R.; Vaidyanathan, S.: Narrow band red emitting europium complexes and their application in smart white LEDs and vapoluminescent sensors. Dalton Trans. 49(19), 6205–6219 (2020)

    Article  Google Scholar 

  25. Kostelidou, A.; Kalogiannis, S.; Begou, O.-A.; Perdih, F.; Turel, I.; Psomas, G.: Synthesis, structure and biological activity of copper (II) complexes with gatifloxacin. Polyhedron 119, 359–370 (2016)

    Article  Google Scholar 

  26. Aytac, A.; Özmen, Ü.; Kabasakaloglu, M.: Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1, 3-dienylideneamino)-1, 3, 4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Mater. Chem. Phys. 89, 176–181 (2005)

    Google Scholar 

  27. Etaiw, S.E.-D.H.; Fouda, A.E.-A.S.; Amer, S.A.; El-bendary, M.M.: Structure, characterization and anti-corrosion activity of the new metal–organic framework Ag (qox)(4-ab). J. Inorg. Organomet. Polym. Mater. 21(2), 327–335 (2011)

    Article  Google Scholar 

  28. Etaiw, S.E.-D.H.; Fouda, A.E.-A.S.; Abdou, S.N.; El-bendary, M.M.: Structure, characterization and inhibition activity of new metal–organic framework. Corros. Sci. 53(11), 3657–3665 (2011)

    Article  Google Scholar 

  29. Rbaa, M.; Abousalem, A.S.; Touhami, M.E.; Warad, I.; Bentiss, F.; Lakhrissi, B.; Zarrouk, A.: Novel Cu (II) and Zn (II) complexes of 8-hydroxyquinoline derivatives as effective corrosion inhibitors for mild steel in 10 M HCl solution: computer modeling supported experimental studies. J. Mol. Liq. 290, 111243 (2019)

    Article  Google Scholar 

  30. Singh, V.P.; Singh, P.; Singh, A.K.: Synthesis, structural and corrosion inhibition studies on cobalt (II), nickel (II), copper (II) and zinc (II) complexes with 2-acetylthiophene benzoylhydrazone. Inorganica Chim. Acta. 379(1), 56–63 (2011)

    Article  Google Scholar 

  31. Radi, A.; El Mahi, B.; Aouniti, A.; El Massoudi, M.; Radi, S.; Kaddouri, M.; Chelfi, T.; Jmiai, A.; El Asri, A.; Hammouti, B.: Mitigation effect of novel bipyrazole ligand and its copper complex on the corrosion behavior of steel in HCl: combined experimental and computational studies. Chem. Phys. Lett. 795, 139532 (2022)

    Article  Google Scholar 

  32. El-Massaoudi, M.; Radi, S.; Salhi, A.; Mabkhot, Y.N.; Al-Showiman, S.S.; Ghabbour, H.A.; Adarsh, N.N.; Garcia, Y.: Novel 1D coordination polymers built from acyclic cryptate containing bis (1 H-1, 2, 4-triazole) ligands and featuring coordinated counteranions. New J. Chem. 42(14), 11324–11333 (2018)

    Article  Google Scholar 

  33. El Bakri, Y.; Guo, L.; Essassi, E.M.: Electrochemical, DFT and MD simulation of newly synthesized triazolotriazepine derivatives as corrosion inhibitors for carbon steel in 1 M HCl. J. Mol. Liq. 274, 759–769 (2019)

    Article  Google Scholar 

  34. Kaya, S.; Tüzün, B.; Kaya, C.: Conceptual density functional theoretical investigation of the corrosion inhibition efficiencies of some molecules containing mercapto (-SH) group. Curr. Phys. Chem. 7(2), 147–153 (2017)

    Article  Google Scholar 

  35. Bashir, S.; Sharma, V.; Singh, G.; Lgaz, H.; Salghi, R.; Singh, A.; Kumar, A.: Electrochemical behavior and computational analysis of phenylephrine for corrosion inhibition of aluminum in acidic medium. Metall. Mater. Trans. A. 50(1), 468–479 (2019)

    Article  Google Scholar 

  36. El Bakri, Y.; Guo, L.; Harmaoui, A.; Ali, A.B.; Essassi, E.M.; Mague, J.T.: Synthesis, crystal structure, DFT, molecular dynamics simulation and evaluation of the anticorrosion performance of a new pyrazolotriazole derivative. J. Mol. Struct. 1176, 290–297 (2019)

    Article  Google Scholar 

  37. Bashir, S.; Sharma, V.; Lgaz, H.; Chung, I.-M.; Singh, A.; Kumar, A.: The inhibition action of analgin on the corrosion of mild steel in acidic medium: a combined theoretical and experimental approach. J. Mol. Liq. 263, 454–462 (2018)

    Article  Google Scholar 

  38. Bashir, S.; Thakur, A.; Lgaz, H.; Chung, I.-M.; Kumar, A.: Computational and experimental studies on Phenylephrine as anti-corrosion substance of mild steel in acidic medium. J. Mol. Liq. 293, 111539 (2019)

    Article  Google Scholar 

  39. Fedrizzi, L.; Ciaghi, L.; Bonora, P.L.; Fratesi, R.; Roventi, G.: Corrosion behaviour of electrogalvanized steel in sodium chloride and ammonium sulphate solutions; a study by EIS. J. Appl. Electrochem. 22(3), 247–254 (1992)

    Article  Google Scholar 

  40. Keddam, M.; Mattos, O.R.; Takenouti, H.: Discussion of “Impedance measurements of the anodic iron dissolution” H. Schweickert, W. J. Lorenz, and H. Friedburg (pp. 1693–1701, Vol. 127, No. 8). J. Electrochem. Soc. 128(6), 1294–1295 (1981)

    Article  Google Scholar 

  41. Epelboin, I.; Keddam, M.: Faradaic impedances: diffusion impedance and reaction impedance. J. Electrochem. Soc. 117(8), 1052 (1970)

    Article  Google Scholar 

  42. Annergren, I.; Keddam, M.; Takenouti, H.; Thierry, D.: Modelling of the passivation mechanism of Fe–Cr binary alloys from ac impedance and frequency resolved rrde—I. Behaviour of Fe–Cr alloys in 05 M H2SO4. Electrochim. Acta 41(7–8), 1121–1135 (1996)

    Article  Google Scholar 

  43. Rbaa, M.; Dohare, P.; Berisha, A.; Dagdag, O.; Lakhrissi, L.; Galai, M.; Lakhrissi, B.; Touhami, M.E.; Warad, I.; Zarrouk, A.: New Epoxy sugar based glucose derivatives as eco friendly corrosion inhibitors for the carbon steel in 1.0 M HCl: experimental and theoretical investigations. J. Alloys Compd. 833, 154949 (2020)

    Article  Google Scholar 

  44. Hosseini, M.; Fotouhi, L.; Ehsani, A.; Naseri, M.: Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: potentiodynamic and electrochemical impedance spectroscopy study. J. Colloid Interface Sci. 505, 213–219 (2017)

    Article  Google Scholar 

  45. Ehsani, A.; Moshrefi, R.; Ahmadi, M.: Electrochemical investigation of inhibitory of new synthesized 3-(4-iodophenyl)-2-imino-2, 3-dihydrobenzo [d] oxazol-5-yl 4-methylbenzenesulfonate on corrosion of stainless steel in acidic medium. J. Electrochem. Sci. Technol. 6(1), 7–15 (2015)

    Article  Google Scholar 

  46. Beikmohammadi, M.; Fotouhi, L.; Ehsani, A.; Naseri, M.: Potentiodynamic and electrochemical impedance spectroscopy study of anticorrosive properties of p-type conductive polymer/TiO2 nanoparticles. Solid State Ionics 324, 138–143 (2018)

    Article  Google Scholar 

  47. Ehsani, A.; Mahjani, M.G.; Moshrefi, R.; Mostaanzadeh, H.; Shayeh, J.S.: Electrochemical and DFT study on the inhibition of 316L stainless steel corrosion in acidic medium by 1-(4-nitrophenyl)-5-amino-1H-tetrazole. RSC Adv. 4(38), 20031–20037 (2014)

    Article  Google Scholar 

  48. El Hezzat, M.; Zarrok, H.; Benzekri, Z.; El Assyry, A.; Boukhris, S.; Souizi, A.; Galai, M.; Touir, R.; Touhami, M.E.; Oudda, H.: Electrochemical and theoretical evaluation of ethyl 6-amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate as corrosion inhibitor for low carbon steel in 1.0 M HCl. Der Pharma Chem. 7(10), 77–88 (2015)

    Google Scholar 

  49. Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.: Gaussian 09, ReVision A. 2, Gaussian Inc.: Wallingford CT (2009)

  50. D. Systemes, BIOVIA Materials Studio version 8.0, Accelrys Inc. USA., (2016)

  51. Sun, H.; Ren, P.; Fried, J.R.: The COMPASS force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. S 8(1–2), 229–246 (1998)

    Article  Google Scholar 

  52. Tang, Y.; Zhang, F.; Hu, S.; Cao, Z.; Wu, Z.; Jing, W.: Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: gravimetric, electrochemical, SEM and XPS studies. Corros. Sci. 74, 271–282 (2013)

    Article  Google Scholar 

  53. Nan, C.-W.; Tschöpe, A.; Holten, S.; Kliem, H.; Birringer, R.: Grain size-dependent electrical properties of nanocrystalline ZnO. J. Appl. Phys. 85(11), 7735–7740 (1999)

    Article  Google Scholar 

  54. Bouklah, M.; Kaddouri, M.; Toubi, Y.; Hammouti, B.; Radi, S.; Ebenso, E.E.: Corrosion inhibition of steel in hydrochloric acid solution by new N, N′-bipyrazole piperazine derivatives. Int. J. Electrochem. Sci. 8, 7437–7454 (2013)

    Google Scholar 

  55. Attou, A.; Tourabi, M.; Benikdes, A.; Benali, O.; Ouici, H.B.; Benhiba, F.; Zarrouk, A.; Jama, C.; Bentiss, F.: Experimental studies and computational exploration on the 2-amino-5-(2-methoxyphenyl)-1, 3, 4-thiadiazole as novel corrosion inhibitor for mild steel in acidic environment. Colloids Surf. A Physicochem. Eng. Asp. 604, 125320 (2020)

    Article  Google Scholar 

  56. Bentiss, F.; Jama, C.; Mernari, B.; El Attari, H.; El Kadi, L.; Lebrini, M.; Traisnel, M.; Lagrenée, M.: Corrosion control of mild steel using 3, 5-bis (4-methoxyphenyl)-4-amino-1, 2, 4-triazole in normal hydrochloric acid medium. Corros. Sci. 51(8), 1628–1635 (2009)

    Article  Google Scholar 

  57. Popova, A.; Christov, M.; Vasilev, A.: Mono-and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors. Part II: electrochemical impedance and polarisation resistance results. Corros. Sci. 53(5), 1770–1777 (2011)

    Article  Google Scholar 

  58. Lgaz, H.; Saadouni, M.; Salghi, R.; Jodeh, S.; Elfaydy, M.; Lakhrissi, B.; Boukhris, S.; Oudda, H.: Investigation of quinoline derivatives as corrosion inhibitors for mild steel in HCl 1.0 M. Der Pharm. Lett. 8(18), 158–166 (2016)

    Google Scholar 

  59. Berrissoul, A.; Ouarhach, A.; Benhiba, F.; Romane, A.; Zarrouk, A.; Guenbour, A.; Dikici, B.; Dafali, A.: Evaluation of Lavandula mairei extract as green inhibitor for mild steel corrosion in 1 M HCl solution. Experimental and theoretical approach. J. Mol. Liq. 313, 113493 (2020)

    Article  Google Scholar 

  60. Murmu, M.; Saha, S.K.; Murmu, N.C.; Banerjee, P.: Effect of stereochemical conformation into the corrosion inhibitive behaviour of double azomethine based Schiff bases on mild steel surface in 1 mol L−1 HCl medium: an experimental, density functional theory and molecular dynamics simulation study. Corros. Sci. 146, 134–151 (2019)

    Article  Google Scholar 

  61. Huang, W.; Hu, L.; Liu, C.; Pan, J.; Tian, Y.; Cao, K.: Corrosion inhibition of carbon steel by Lepidine in HCl solution. Int. J. Electrochem. Sci. 13(11), 11273–11285 (2018)

    Article  Google Scholar 

  62. Tazouti, A.; Galai, M.; Touir, R.; Touhami, M.E.; Zarrouk, A.; Ramli, Y.; Saraçoğlu, M.; Kaya, S.; Kandemirli, F.; Kaya, C.: Experimental and theoretical studies for mild steel corrosion inhibition in 1.0 M HCl by three new quinoxalinone derivatives. J. Mol. Liq. 221, 815–832 (2016)

    Article  Google Scholar 

  63. Ferreira, E.S.; Giacomelli, C.; Giacomelli, F.C.; Spinelli, A.: Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Mater. Chem. Phys. 83(1), 129–134 (2004)

    Article  Google Scholar 

  64. Solmaz, R.; Altunbaş, E.; Kardaş, G.: Adsorption and corrosion inhibition effect of 2-((5-mercapto-1, 3, 4-thiadiazol-2-ylimino) methyl) phenol Schiff base on mild steel. Mater. Chem. Phys. 125(3), 796–801 (2011)

    Article  Google Scholar 

  65. Kharbach, Y.; Qachchachi, F.Z.; Haoudi, A.; Tourabi, M.; Zarrouk, A.; Jama, C.; Olasunkanmi, L.O.; Ebenso, E.E.; Bentiss, F.: Anticorrosion performance of three newly synthesized isatin derivatives on carbon steel in hydrochloric acid pickling environment: electrochemical, surface and theoretical studies. J. Mol. Liq. 246, 302–316 (2017)

    Article  Google Scholar 

  66. Langmuir, I.: The construction and fundamental properties of solids and liquids part ii liquids. J. Am. Chem. Soc. 39, 1917 (1848)

    Google Scholar 

  67. Frumkin, A.: The capillary curve of higher fatty acids and the constitutive equation of the surface layer. Zeit Fur Phy. Chem. Stoch. Und. Ver. 116, 466–484 (1925)

    Article  Google Scholar 

  68. De Boer, J.H.; Kaspersma, J.H.; Van Dongen, R.H.; Broekhoff, J.C.P.: The adsorption curve for physical adsorption at high relative pressures. J. Colloid Interface Sci. 38(1), 97–100 (1972)

    Article  Google Scholar 

  69. Yadav, D.K.; Chauhan, D.S.; Ahamad, I.; Quraishi, M.A.: Electrochemical behavior of steel/acid interface: adsorption and inhibition effect of oligomeric aniline. RSC Adv. 3(2), 632–646 (2013)

    Article  Google Scholar 

  70. Shaw, P.; Obot, I.B.; Yadav, M.: Functionalized 2-hydrazinobenzothiazole with carbohydrates as a corrosion inhibitor: electrochemical, XPS, DFT and Monte Carlo simulation studies. Mater. Chem. Front. 3(5), 931–940 (2019)

    Article  Google Scholar 

  71. Tayebi, H.; Bourazmi, H.; Himmi, B.; El Assyry, A.; Ramli, Y.; Zarrouk, A.; Geunbour, A.; Hammouti, B.: Combined electrochemical and quantum chemical study of new quinoxaline derivative as corrosion inhibitor for carbon steel in acidic media. Der Pharma Chem. 6(5), 220–234 (2014)

    Google Scholar 

  72. Noor, E.A.: Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves. Int. J. Electrochem. Sci. 2(12) (2007)

  73. Zhao, T.; Mu, G.: The adsorption and corrosion inhibition of anion surfactants on aluminium surface in hydrochloric acid. Corros. Sci. 41(10), 1937–1944 (1999)

    Article  Google Scholar 

  74. Scendo, M.: Potassium ethyl xanthate as corrosion inhibitor for copper in acidic chloride solutions. Corros. Sci. 47(7), 1738–1749 (2005)

    Article  Google Scholar 

  75. Scendo, M.: Corrosion inhibition of copper by potassium ethyl xanthate in acidic chloride solutions. Corros. Sci. 47(11), 2778–2791 (2005)

    Article  Google Scholar 

  76. Salim, R.; Ech-chihbi, E.; Oudda, H.; Aoufir, Y.E.L.; El-Hajjaji, F.; Elaatiaoui, A.; Oussaid, A.; Hammouti, B.; Elmsellem, H.; Taleb, M.: The inhibition effect of imidazopyridine derivatives on C38 steel in hydrochloric acid solution. Der Pharma Chem. 8(3), 200–213 (2016)

    Google Scholar 

  77. Le Mehaute, A.; Crepy, G.: Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion. 9, 17–30 (1983)

    Google Scholar 

  78. Yadav, D.K.; Quraishi, M.A.: Application of some condensed uracils as corrosion inhibitors for mild steel: gravimetric, electrochemical, surface morphological, UV–visible, and theoretical investigations. Ind. Eng. Chem. Res. 51(46), 14966–14979 (2012)

    Article  Google Scholar 

  79. Wang, C.; Lai, C.; Xie, B.; Guo, X.; Fu, D.; Li, B.; Zhu, S.: Corrosion inhibition of mild steel in HCl medium by S-benzyl-O, O’-bis(2-naphthyl)dithiophosphate with ultra-long lifespan. Results Phys. 10, 558–567 (2018)

    Article  Google Scholar 

  80. El Faydy, M.; Lakhrissi, B.; Guenbour, A.; Kaya, S.; Bentiss, F.; Warad, I.; Zarrouk, A.: In situ synthesis, electrochemical, surface morphological, UV–visible, DFT and Monte Carlo simulations of novel 5-substituted-8-hydroxyquinoline for corrosion protection of carbon steel in a hydrochloric acid solution. J. Mol. Liq. 280, 341–359 (2019)

    Article  Google Scholar 

  81. Elmorsi, M.A.; Hassanein, A.M.: Corrosion inhibition of copper by heterocyclic compounds. Corros. Sci. 41(12), 2337–2352 (1999)

    Article  Google Scholar 

  82. Mahdavian, M.; Attar, M.M.: Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros. Sci. 51(2), 409–414 (2009)

    Article  Google Scholar 

  83. Jafari, H.; Danaee, I.; Eskandari, H.; RashvandAvei, M.: Electrochemical and theoretical studies of adsorption and corrosion inhibition of N, N′-bis(2-hydroxyethoxyacetophenone)-2,2-dimethyl-1,2-propanediimine on low carbon steel (API 5L grade B) in acidic solution. Ind. Eng. Chem. Res. 52(20), 6617–6632 (2013)

    Article  Google Scholar 

  84. Bendjeddou, A.; Abbaz, T.; Gouasmia, A.; Villemin, D.: Molecular structure, HOMO-LUMO, MEP and Fukui function analysis of some TTF-donor substituted molecules using DFT (B3LYP) calculations. Int. Res. J. Pure Appl. Chem. 12(1), 1–9 (2016)

    Article  Google Scholar 

  85. Rbaa, M.; Benhiba, F.; Galai, M.; Abousalem, A.S.; Ouakki, M.; Lai, C.-H.; Lakhrissi, B.; Jama, C.; Warad, I.; Touhami, M.E.: Synthesis and characterization of novel Cu (II) and Zn (II) complexes of 5-{[(2-Hydroxyethyl) sulfanyl] methyl}-8-hydroxyquinoline as effective acid corrosion inhibitor by experimental and computational testings. Chem. Phys. Lett. 754, 137771 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Salhi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radi, A., Kaddouri, M., El Massaoudi, M. et al. Experimental and Computational Studies of Two Cu (II) and Zn (II) Coordination Polymers Based on Acyclic Cryptate-Bis(1H-1,2,4-Triazole) as Promising Corrosion Inhibitors in Molar HCl Medium. Arab J Sci Eng 48, 7807–7824 (2023). https://doi.org/10.1007/s13369-023-07890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07890-x

Keywords

Navigation