Skip to main content
Log in

Scrutinization of Ferrohydrodynamic Through Pores on the Surface of Disk Experiencing Rotation: Effects of FHD Interaction, Thermal Radiation, and Internal Heat Source

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ferrohydrodynamics studies a magnetically polarizable fluid’s flow and thermodynamic behavior in response to an external magnetic field. Regarding heat transfer analysis at different levels of rotation, permeability, interaction for ferrohydrodynamics, thermal radiation, momentum-to-thermal diffusivity ratio, and viscous dissipation, nothing is known despite the framework for understanding the dynamics of magnetic fluids being acceptable and useful. This report presents the outcome of a study on axis-symmetric three-dimensional ferrohydrodynamics revolving through a porous medium about the vertical \(z-\)axis on a rotating disk. After being converted into a non-dimensional form using a scaling set of transformations, the governing equation of the transport phenomena was solved numerically using an in-built algorithm of the bvp4c-MATLAB program, which incorporates Kelvin’s body force and Coriolis force. It is essential to conclude that the increased disk rotation causes the radial flow to prevail. The thermal boundary layer and the liquid cools as a result of fluid particles adhering to the pores in the disk as a result of heat absorption. Heat transmission decreases as disk rotation increases, likewise the permeability of the porous media and ferrohydrodynamic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Rosensweig, R. E.: Ferrohydrodynamics. Dover Books - Courier Corporation UK. ISBN 0486678342, 9780486678344 (2013).

  2. Neuringer, J.L.; Rosensweig, R.E.: Ferrohydrodynamics. Phys. Fluids 7(12), 1927 (1964). https://doi.org/10.1063/1.1711103

    Article  MathSciNet  ADS  Google Scholar 

  3. Chen, C.Y.; Tsai, W.K.; Miranda, J.A.: Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Phys. Rev. E 77(5), 056306 (2008)

    Article  ADS  Google Scholar 

  4. Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60, 676–687 (2019). https://doi.org/10.1016/j.cjph.2019.06.007

    Article  MathSciNet  CAS  Google Scholar 

  5. Charles, S.W.: The preparation of magnetic fluids. In: Odenbach, S. (ed.) Ferrofluids, pp. 3–18. Magnetically Controllable Fluids and Their Applications, Springer, Berlin (2002)

    Chapter  Google Scholar 

  6. Zubarev, A.Y.; Iskakova, L.Y.: On the theory of structural transformations in magnetic fluids. Colloid J. 65(6), 703–710 (2003)

    Article  CAS  Google Scholar 

  7. Rinaldi, C.; Chaves, A.; Elborai, S.; He, X.T.; Zahn, M.: Magnetic fluid rheology and flows. Curr. Opin. Colloid Interface Sci. 10(3–4), 141–157 (2005). https://doi.org/10.1016/j.cocis.2005.07.004

    Article  CAS  Google Scholar 

  8. Sheikholeslami, M.; Ganji, D.D.: Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy 75, 400–410 (2014). https://doi.org/10.1016/j.energy.2014.07.089

    Article  CAS  Google Scholar 

  9. Raikher, Y.L.; Stepanov, V.I.; Bacri, J.C.; Perzynski, R.: Orientational dynamics in magnetic fluids under strong coupling of external and internal relaxations. J. Magn. Magn. Mater. 289, 222–225 (2005). https://doi.org/10.1016/j.jmmm.2004.11.064

    Article  CAS  ADS  Google Scholar 

  10. Zhu, T.; Marrero, F.; Mao, L.: Continuous separation of non-magnetic particles inside ferrofluids. Microfluid. Nanofluid. 9(4–5), 1003–1009 (2010). https://doi.org/10.1007/s10404-010-0616-1

    Article  Google Scholar 

  11. Muhammad, N.; Nadeem, S.; Mustafa, M.: Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 233(2), 177–183 (2018). https://doi.org/10.1177/0954408918759244

    Article  CAS  Google Scholar 

  12. Sharma, K.: FHD flow and heat transfer over a porous rotating disk accounting for Coriolis force along with viscous dissipation and thermal radiation. Heat Transfer 51(5), 4377–4392 (2022)

    Article  Google Scholar 

  13. Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Waqas, M.; Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Article  Google Scholar 

  14. Hayat, T.; Farooq, M.; Alsaedi, A.; Al-Solamy, F.: Impact of Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv. 5(8), 087159 (2015)

    Article  ADS  Google Scholar 

  15. Farooq, M.; Anjum, A.; Rehman, S.; Malik, M.Y.: Entropy analysis in thermally stratified Powell-Eyring magnesium-blood nanofluid convection past a stretching surface. Int. Commun. Heat Mass Transfer 138, 106375 (2022)

    Article  CAS  Google Scholar 

  16. Farooq, M.; Anjum, A.; Anwer, A.; Malik, M.Y.: Convective transportation in thermally stratified Tween-20-water/ethyl acetate fluid reservoirs constraint to Riga surface. Int. Commun. Heat Mass Transfer 138, 106271 (2022)

    Article  CAS  Google Scholar 

  17. Farooq, M.; Anjum, A.; Masood, S.: Dissipative effects in hydromagnetic nanomaterial flow with variable fluid characteristics: Modern diffusion analysis. Int. Commun. Heat Mass Transfer 127, 105503 (2021)

    Article  CAS  Google Scholar 

  18. Abd Elmaboud, Y.; Mekheimer, K.S.; Abdelsalam, S.I.: A study of nonlinear variable viscosity in finite-length tube with peristalsis. Appl. Bionics Biomech. 11(4), 197–206 (2014)

    Article  Google Scholar 

  19. Mekheimer, K.S.; Abd Elmaboud, Y.: Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Can. J. Phys. 92(12), 1541–1555 (2014)

    Article  CAS  ADS  Google Scholar 

  20. Shevchuk I. V.:Convective heat and mass transfer in rotating disk systems. vol. 45, Springer (2009).

  21. Karman, V.T.: Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1(4), 233–252 (1921)

    Article  Google Scholar 

  22. Bodewadt, V.U.: Die drehstromung uber festem grunde. ZAMM J. Appl. Math. Mech. 20(5), 241–253 (1940)

    Article  MathSciNet  Google Scholar 

  23. Batchelor, G.K.: Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quart. J. Mech. Appl. Math. 4(1), 29–41 (1951)

    Article  MathSciNet  Google Scholar 

  24. Sharma, K.; Vijay, N.; Kumar, S.; Makinde, O.D.: Hydromagnetic boundary layer flow with heat transfer past a rotating disc embedded in a porous medium. Heat Transfer 50(5), 4342–4353 (2021)

    Article  Google Scholar 

  25. Sharma, K.; Vijay, N.; Mabood, F.; Badruddin, I.A.: Numerical simulation of heat and mass transfer in magnetic nanofluid flow by a rotating disk with variable fluid properties. Int. Commun. Heat Mass Transfer 133, 105977 (2022)

    Article  CAS  Google Scholar 

  26. Andersson, H.I.; De Korte, E.; Meland, R.: Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn. Res. 28(2), 75 (2001)

    Article  ADS  Google Scholar 

  27. Mahanthesh, B.; Gireesha, B.J.; Animasaun, I.L.; Muhammad, T.; Shashikumar, N.S.: MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Phys. Scr. 94(8), 085214 (2019)

    Article  CAS  ADS  Google Scholar 

  28. Khan, M.I.; Khan, W.A.; Waqas, M.; Kadry, S.; Chu, Y.M.; Ali, Z.: Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip. Appl. Nanosci. 10(12), 5469–5477 (2020)

    Article  CAS  ADS  Google Scholar 

  29. Sharma, K.; Kumar, S.; Vijay, N.: Numerical simulation of MHD heat and mass transfer past a moving rotating disk with viscous dissipation and ohmic heating. Multidiscip. Model. Mater. Struct. 18, 153–165 (2022)

    Article  CAS  Google Scholar 

  30. Sharma, K.: FHD flow and heat transfer over a porous rotating disk accounting for Coriolis force along with viscous dissipation and thermal radiation. Heat Transfer 51(5), 4377–4392 (2022). https://doi.org/10.1002/htj.22504

    Article  Google Scholar 

  31. Shahid, A.; Bhatti, M.M.; Ellahi, R.; Mekheimer, K.S.: Numerical experiment to examine activation energy and bi-convection Carreau nanofluid flow on an upper paraboloid porous surface: Application in solar energy. Sustain. Energy Technol. Assess. 52, 102029 (2022)

    Google Scholar 

  32. Mekheimer, K.S.; Ramadan, S.F.: New insight into gyrotactic microorganisms for bio-thermal convection of Prandtl nanofluid over a stretching/shrinking permeable sheet. SN Appl. Sci. 2(3), 1–11 (2020)

    Article  Google Scholar 

  33. Zaher, A. Z.; Ali, K. K.; Mekheimer, K. S.: (2021). Electroosmosis forces EOF driven boundary layer flow for a non-Newtonian fluid with planktonic microorganism: Darcy Forchheimer model. Int. J. Numer. Methods Heat Fluid Flow, 31(8), 2534–2559 (2021).

  34. Makinde, O.D.; Animasaun, I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221, 733–743 (2016)

    Article  CAS  Google Scholar 

  35. Zeeshan, A.; Shehzad, N.; Ellahi, R.; Alamri, S.Z.: Convective Poiseuille flow of Al2O3-EG nanofluid in a porous wavy channel with thermal radiation. Neural Comput. Appl. 30(11), 3371–3382 (2018)

    Article  Google Scholar 

  36. Muhammad, N.; Nadeem, S.; Mustafa, M.T.: Impact of magnetic dipole on a thermally stratified ferrofluid past a stretchable surface. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 233(2), 177–183 (2019)

    Article  CAS  Google Scholar 

  37. Sanjay, K.; Kushal, S.: Entropy optimized radiative heat transfer of hybrid nanofluid over vertical moving rotating disk with partial slip. Chin. J. Phys. 77, 861–873 (2022). https://doi.org/10.1016/j.cjph.2022.03.006

    Article  MathSciNet  CAS  Google Scholar 

  38. Abdel-Wahed, M.; Akl, M.: Effect of hall current on MHD flow of a nanofluid with variable properties due to a rotating disk with viscous dissipation and nonlinear thermal radiation. AIP Adv. 6(9), 095308 (2016)

    Article  ADS  Google Scholar 

  39. Sharma, K.; Gupta, S.: Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption. Nonlinear Eng. 6(2), 153–166 (2017)

    Article  ADS  Google Scholar 

  40. Shoaib, M.; Raja, M.A.Z.; Sabir, M.T.; Awais, M.; Islam, S.; Shah, Z.; Kumam, P.: Numerical analysis of 3-D MHD hybrid nanofluid over a rotational disk in presence of thermal radiation with Joule heating and viscous dissipation effects using Lobatto IIIA technique. Alex. Eng. J. 60(4), 3605–3619 (2021)

    Article  Google Scholar 

  41. Sharma, K.; Vijay, N.; Kumar, S.; Mehta, R.: Heat and mass transfer study of hydrocarbon based magnetic nanofluid (C1-20B) with geothermal viscosity. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. (2022). https://doi.org/10.1177/09544089221079949

  42. Schlichting, H.; Gersten, K.: Boundary-Layer Theory. Springer Science & Business Media, New York (2003)

    Google Scholar 

  43. Joshi, V.K.; Ram, P.; Tripathi, D.; Sharma, K.: Numerical investigation of magnetic nanofluids flow over rotating disk embedded in porous medium. Therm. Sci. 22, 2883–2895 (2018)

  44. Sharma, K.; Vijay, N.; Makinde, O.D.; Bhardwaj, S.B.; Singh, R.M.; Mabood, F.: Boundary layer flow with forced convective heat transfer and viscous dissipation past a porous rotating disk. Chaos, Solitons Fractals 148, 111055 (2021)

    Article  MathSciNet  Google Scholar 

  45. Sharma, K.: Rheological effects on boundary layer flow of ferro fluid with forced convective heat transfer over an infinite rotating disk. Pramana J. Phys. 95, 113 (2021)

  46. Neuringer, J.L.: Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients. Int. J. Non-Linear Mech. 1, 123–137 (1966)

    Article  ADS  Google Scholar 

  47. Abdul Maleque, K.H.: Effects of combined temperature- and depth-dependent viscosity and Hall current on an unsteady MHD laminar convective flow due to a rotating disk. Chem. Eng. Commun. 197(4), 506–521 (2009)

    Article  Google Scholar 

  48. Sparrow, E.M.; Gregg, J.L.: Heat transfer from a rotating disk to fluids of any Prandtl number. J. Heat Transfer C. 81, 249–251 (1959)

    Article  Google Scholar 

  49. Saleem, S.; Animasaun, I.L.; Se-Jin, Y.; Al-Mdallal, Q.M.; Nehad Ali, S.; Muhammad, F.: Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and Brownian motion. Surf. Interfaces 30, 101854 (2022). https://doi.org/10.1016/j.surfin.2022.101854

    Article  Google Scholar 

  50. Mehdi, I.; Abbas, Z.; Hasnain, J.: MHD flow and heat transfer between two rotating disks under the effects of nanomaterials (MoS2) and thermal radiation. Case Stud. Thermal Eng. 33, 101968 (2022)

    Article  Google Scholar 

  51. Animasaun, I. L.; Shah, N. A.; Wakif, A.; Mahanthesh, B.; Sivaraj, R.; Koriko, O. K.: Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-analysis, and Scrutinization. Chapman and Hall/CRC. New York. ISBN-13: 978-1032108520, ISBN-10: 1032108525, ISBN9781003217374 (2022).

  52. Sun, X.; Animasaun, I.L.; Swain, K.; Shah, N.A.; Wakif, A.; Olanrewaju, P.O.: Significance of nanoparticle radius, inter-particle spacing, inclined magnetic field, and space-dependent internal heating: The case of chemically reactive water conveying copper nanoparticles. ZAMM J. Appl. Math. Mech. 102(4), e202100094 (2022). https://doi.org/10.1002/zamm.202100094

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the support of Neha Vijay and Vimal K. Joshi. The authors express their cordial thanks to the respected Editor-in-Chief and honorable anonymous reviewers for their precious comments and suggestions to enrich the presentation of this report.

Funding

No funding for the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed as shown in the author lists.

Corresponding author

Correspondence to Qasem M. Al-Mdallal.

Ethics declarations

Conflict of interest:

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Animasaun, I.L. & Al-Mdallal, Q.M. Scrutinization of Ferrohydrodynamic Through Pores on the Surface of Disk Experiencing Rotation: Effects of FHD Interaction, Thermal Radiation, and Internal Heat Source. Arab J Sci Eng 49, 1393–1403 (2024). https://doi.org/10.1007/s13369-023-07853-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07853-2

Keywords

Navigation