Skip to main content
Log in

Study on Modified Water Permeability Method for Fly Ash Concrete in Comparison with DIN 1048 (Part 5)

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The primary cause of concrete deterioration is water permeability through it, which is typically studied using different codes of practices (German, European, and Indian standard codes). It has limitations such as long testing duration, equipment consuming large space, full penetration for low-strength concrete, and undetectable penetration for high-strength concrete. As a result of recognizing the need for a new method for testing low-strength concrete, this article presents a new approach called "Modified water permeability". To check the viability of the Modified method, the concrete mix is designed with and without fly ash based on cementing efficiency approach. The addition of fly ash has shown enhancement in resisting water penetration through concrete. The water penetration depth was reduced by around 10–48% with the addition of different percentages of fly ash, for effective w/c between 0.33 and 0.54. However, for low-strength concrete, the traditional method has shown complete water penetration. These specimens were tested effectively using a modified method. The improvement due to the addition of fly ash was observed in all strength ranges. For validation, the traditional and modified water permeability test results of standard concrete were correlated, which reveals a significant and logical trend. Moreover, the results revealed that the modified method is appropriate for both ordinary and standard concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. IS 456: 2000. Indian standard plain and reinforced concrete—code of practice. BIS, New Delhi (2000)

  2. DIN 1048 (Part 5) Testing concrete: testing of hardened concrete specimens prepared in mould. Deutsches Institut fur Normung, Germany (1991)

  3. EN 12390–8, Testing hardened concrete—part 8: depth of penetration of water under pressure. European Standard, Brussels (2009)

  4. IS 516 (Part 2/section 1): Hardened Concrete—Methods of test. BIS, New Delhi (2018)

  5. Sharma, N.K.; Kumar, P.; Kumar, S.; Thomas, B.S.; Gupta, R.C.: Properties of concrete containing polished granite waste as partial substitution of coarse aggregate. Constr. Build. Mater. 1(151), 158–163 (2017). https://doi.org/10.1016/j.conbuildmat.2017.06.081

    Article  Google Scholar 

  6. Singh, S.; Nagar, R.; Agrawal, V.; Rana, A.; Tiwari, A.: Sustainable utilization of granite cutting waste in high strength concrete. J. Clean. Prod. 10(116), 223–235 (2016). https://doi.org/10.1016/j.jclepro.2015.12.110

    Article  Google Scholar 

  7. Fernando, A.; Selvaranjan, K.; Srikanth, G.; Gamage, J.C.: Development of high strength recycled aggregate concrete-composite effects of fly ash, silica fume and rice husk ash as pozzolans. Mater. Struct. 55(7), 185 (2022). https://doi.org/10.1617/s11527-022-02026-3

    Article  Google Scholar 

  8. Iffat, S.; Manzur, T.; Noor, M.A.: Durability performance of internally cured concrete using locally available low-cost LWA. KSCE J. Civ. Eng. 21(4), 1256–1263 (2017). https://doi.org/10.1007/s12205-016-0793-x

    Article  Google Scholar 

  9. González-Fonteboa, B.; Carro-López, D.; de Brito, J.; Martínez-Abella, F.; Seara-Paz, S.; Gutiérrez-Mainar, S.: Comparison of ground bottom ash and limestone as additions in blended cements. Mater. Struct. 50(1), 1–3 (2017). https://doi.org/10.1617/s11527-016-0954-x

    Article  Google Scholar 

  10. Haq, I.U.; Elahi, A.; Nawaz, A.; Shah, S.A.; Ali, K.: Mechanical and durability performance of concrete mixtures incorporating bentonite, silica fume, and polypropylene fibers. Constr. Build. Mater. 345, 128223 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128223

    Article  Google Scholar 

  11. Ahari, R.S.; Erdem, T.K.; Ramyar, K.: Permeability properties of self-consolidating concrete containing various supplementary cementitious materials. Constr. Build. Mater. 15(79), 326–336 (2015). https://doi.org/10.1016/j.conbuildmat.2015.01.053

    Article  Google Scholar 

  12. Sadrmomtazi, A.; Tahmouresi, B.; Kohani, K.R.: Effect of fly ash and silica fume on transition zone, pore structure and permeability of concrete. Mag. Concr. Res. 70(10), 519–532 (2018). https://doi.org/10.1680/jmacr.16.00537

    Article  Google Scholar 

  13. Alexandre Bogas, J.; Gomes, M.G.; Real, S.: Capillary absorption of structural lightweight aggregate concrete. Mater. Struct. 48(9), 2869–2883 (2015). https://doi.org/10.1617/s11527-014-0364-x

    Article  Google Scholar 

  14. Li, G.: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 34(6), 1043–1049 (2004). https://doi.org/10.1016/j.cemconres.2003.11.013

    Article  Google Scholar 

  15. Ramanathan, P.; Baskar, I.; Muthupriya, P.; Venkatasubramani, R.: Performance of self-compacting concrete containing different mineral admixtures. KSCE J. Civ. Eng. 17(2), 465–472 (2013). https://doi.org/10.1007/s12205-013-1882-8

    Article  Google Scholar 

  16. Güneyisi, E.; Gesoğlu, M.: A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Mater. Struct. 41(3), 479–493 (2008). https://doi.org/10.1617/s11527-007-9260-y

    Article  Google Scholar 

  17. Turk, K.; Karatas, M.; Gonen, T.: Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC. KSCE J. Civ. Eng. 17(1), 202–209 (2013). https://doi.org/10.1007/s12205-013-1680-3

    Article  Google Scholar 

  18. Nath, P.; Sarker, P.K.: Effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing class F fly ash. KSCE J. Civ. Eng. 17(6), 1437–1445 (2013). https://doi.org/10.1007/s12205-013-0487-6

    Article  Google Scholar 

  19. Rukzon, S.; Chindaprasirt, P.: Use of ternary blend of Portland cement and two pozzolans to improve durability of high-strength concrete. KSCE J. Civ. Eng. 18(6), 1745–1752 (2014). https://doi.org/10.1007/s12205-014-0461-y

    Article  Google Scholar 

  20. Khatib, J.M.: Performance of self-compacting concrete containing fly ash. Constr. Build. Mater. 22(9), 1963–1971 (2008). https://doi.org/10.1016/j.conbuildmat.2007.07.011

    Article  Google Scholar 

  21. Rohman, R.K.; Kristiawan, S.A.; Saifullah, H.A.; Basuki, A.: The development length of tensile reinforcement embedded in high volume fly ash-self compacting concrete (HVFA-SCC). Constr. Build. Mater. 348, 128680 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128680

    Article  Google Scholar 

  22. Ram, K.; Serdar, M.; Londono-Zuluaga, D.; Scrivener, K.: The effect of pore microstructure on strength and chloride ingress in blended cement based on low kaolin clay. Case Stud. Constr. Mater. 17, e01242 (2022). https://doi.org/10.1016/j.cscm.2022.e01242

    Article  Google Scholar 

  23. Kan, L.; Wang, F.; Zhang, Y.; Wei, Y.; Wu, M.: An exploratory study on using red mud waste as a replacement for fly ash to prepare engineered cementitious composites. Constr. Build. Mater. 342, 127900 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127900

    Article  Google Scholar 

  24. Swathi, V.; Asadi, S.S.: An experimental investigation on mechanical, durability and microstructural properties of high-volume fly ash based concrete. J. Build. Pathol. Rehabil. 7(1), 1 (2022). https://doi.org/10.1007/s41024-022-00172-3

    Article  Google Scholar 

  25. Hosseinzadeh, N.; Montanari, L.; Suraneni, P.: Durability of concretes exposed to high concentrations of CaCl2 and MgCl2. Mater. Struct. 55(6), 153 (2022). https://doi.org/10.1617/s11527-022-01992-y

    Article  Google Scholar 

  26. Hannesson, G.; Kuder, K.; Shogren, R.; Lehman, D.: The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete. Constr. Build. Mater. 1(30), 161–168 (2012). https://doi.org/10.1016/j.conbuildmat.2011.11.046

    Article  Google Scholar 

  27. Gao, Y.; Jing, H.; Zhou, Z.; Shi, X.; Li, L.; Fu, G.: Roles of carbon nanotubes in reinforcing the interfacial transition zone and impermeability of concrete under different water-to-cement ratios. Constr. Build. Mater. 272, 121664 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121664

    Article  Google Scholar 

  28. Lothenbach, B.; Scrivener, K.; Hooton, R.D.: Supplementary cementitious materials. Cem. Concr. Res. 41(12), 1244–1256 (2011). https://doi.org/10.1016/j.cemconres.2010.12.001

    Article  Google Scholar 

  29. Wong, H.S.; Zobel, M.; Buenfeld, N.R.; Zimmerman, R.W.: Influence of the interfacial transition zone and microcracking on the diffusivity, permeability and sorptivity of cement-based materials after drying. Mag. Concr. Res. 61(8), 571–589 (2009). https://doi.org/10.1680/macr.2008.61.8.571

    Article  Google Scholar 

  30. Jiang, Z.; Huang, Q.; Xi, Y.; Gu, X.; Zhang, W.: Experimental study of diffusivity of the interfacial transition zone between cement paste and aggregate. J. Mater. Civ. Eng. 28(10), 04016109 (2016). https://doi.org/10.1061/(asce)mt.1943-5533.0001637

    Article  Google Scholar 

  31. Wang, Y.; Jin, F.; Xie, Y.: Experimental study on effects of casting procedures on compressive strength, water permeability, and interfacial transition zone porosity of rock-filled concrete. J. Mater. Civ. Eng. 28(8), 04016055 (2016). https://doi.org/10.1061/(asce)mt.1943-5533.0001558

    Article  Google Scholar 

  32. Askari Dolatabad, Y.; Abolpour, B.; Tazangi, M.A.: Investigating effects of Nano particles of silica on the properties of self-compacting concrete containing Perlite, Leca, and Scoria light weight aggregates. Arab. J. Geosci. 14(10), 1–3 (2021). https://doi.org/10.1007/s12517-021-07233-w

    Article  Google Scholar 

  33. Keerio, M.A.; Saand, A.; Chaudhry, R.; Bheel, N.; Soohu, S.: The effect of local metakaolin developed from natural material soorh on selected properties of concrete/mortar. SILICON 14(4), 1807–1816 (2022). https://doi.org/10.1007/s12633-021-00993-w

    Article  Google Scholar 

  34. Gesoğlu, M.; Güneyisi, E.; Özturan, T.; Mermerdaş, K.: Permeability properties of concretes with high reactivity metakaolin and calcined impure kaolin. Mater. Struct. 47(4), 709–728 (2014). https://doi.org/10.1617/s11527-013-0090-9

    Article  Google Scholar 

  35. Esmaeili, J.; Aslani, H.: Use of copper mine tailing in concrete: strength characteristics and durability performance. J. Mater. Cycles Waste Manage. 21(3), 729–741 (2019). https://doi.org/10.1007/s10163-019-00831-7

    Article  Google Scholar 

  36. Gupta, T.; Siddique, S.; Sharma, R.K.; Chaudhary, S.: Investigating mechanical properties and durability of concrete containing recycled rubber ash and fibers. J. Mater. Cycles Waste Manage. 23(3), 1048–1057 (2021). https://doi.org/10.1007/s10163-021-01192-w

    Article  Google Scholar 

  37. Agrawal, Y.; Gupta, T.: Examining the effect of the particle modification on zinc tailing waste as a cementitious material in concrete: performance and toxicity assessment. J. Mater. Cycles Waste Manag. 24(3), 1156–1171 (2022). https://doi.org/10.1007/s10163-022-01388-8

    Article  Google Scholar 

  38. Jain, A.; Siddique, S.; Gupta, T.; Sharma, R.K.; Chaudhary, S.: Utilization of shredded waste plastic bags to improve impact and abrasion resistance of concrete. Environ. Dev. Sustain. 22(1), 337–362 (2020). https://doi.org/10.1007/s10668-018-0204-1

    Article  Google Scholar 

  39. Keerio, M.A.; Saand, A.; Kumar, A.; Bheel, N.; Ali, K.: Effect of local metakaolin developed from natural material soorh and coal bottom ash on fresh, hardened properties and embodied carbon of self-compacting concrete. Environ. Sci. Pollut. Res. 28(42), 60000–60018 (2021). https://doi.org/10.1007/s11356-021-14960-w

    Article  Google Scholar 

  40. Bheel, N.; Ali, M.O.; Khahro, S.H.; Keerio, M.A.: Experimental study on fresh, mechanical properties and embodied carbon of concrete blended with sugarcane bagasse ash, metakaolin, and millet husk ash as ternary cementitious material. Environ. Sci. Pollut. Res. 29(4), 5224–5239 (2022). https://doi.org/10.1007/s11356-021-15954-4

    Article  Google Scholar 

  41. Bheel, N.; Sohu, S.; Jhatial, A.A.; Memon, N.A.; Kumar, A.: Combined effect of coconut shell and sugarcane bagasse ashes on the workability, mechanical properties and embodied carbon of concrete. Environ. Sci. Pollut. Res. 29(4), 5207–5223 (2022). https://doi.org/10.1007/s11356-021-16034-3’

    Article  Google Scholar 

  42. Praveenkumar, S.; Sankarasubramanian, G.: Synergic effect of sugarcane bagasse ash based cement on high performance concrete properties. SILICON 13(7), 2357–2367 (2021). https://doi.org/10.1007/s12633-020-00832-4

    Article  Google Scholar 

  43. Jain, A.; Siddique, S.; Gupta, T.; Jain, S.; Sharma, R.K.; Chaudhary, S.: Fresh, strength, durability and microstructural properties of shredded waste plastic concrete. Iranian J. Sci. Technol. Trans. Civ. Eng. 1(43), 455–465 (2019). https://doi.org/10.1007/s40996-018-0178-0

    Article  Google Scholar 

  44. Mohanraj, A.; Senthilkumar, V.: Effect of metakaolin on the durability property of superabsorbent polymer blended self-compacting concrete. Iranian J. Sci. Technol. Trans. Civ. Eng. 46(3), 2099–2110 (2022). https://doi.org/10.1007/s40996-021-00660-5

    Article  Google Scholar 

  45. Dinakar, P.; Reddy, M.K.; Sharma, M.: Behaviour of self compacting concrete using Portland pozzolana cement with different levels of fly ash. Mater. Des. 1(46), 609–616 (2013). https://doi.org/10.1016/j.matdes.2012.11.015

    Article  Google Scholar 

  46. Hassani, M.; Vessalas, K.; Sirivivatnanon, V.; Baweja, D.: Influence of permeability-reducing admixtures on water penetration in concrete. ACI Mater. J. 114, 911–922 (2017). https://doi.org/10.14359/51701002

    Article  Google Scholar 

  47. IS 8112: 2013. Ordinary Portland cement 43 grade—specification. BIS, New Delhi (2013)

  48. IS 3812 (Part 1). Specification for Pulverized fuel ash, for use as Pozzolana in cement, cement mortar and concrete. BIS, New Delhi (2003)

  49. IS 9103: 1999. Concrete admixtures—specification (incorporating Amendment nos. 1 and 2). BIS, New Delhi (1999)

  50. Smith, I.A.: The design of fly-ash concretes. Proc. Inst. Civ. Eng. 36(4), 769–790 (1967). https://doi.org/10.1680/iicep.1967.8472

    Article  Google Scholar 

  51. Alvarez, M.; Salas, J.; Veras, J.: Properties of concrete made with fly ash. Int. J. Cem. Compos. Lightweight Concrete 10(2), 109–120 (1988). https://doi.org/10.1016/0262-5075(88)90037-1

    Article  Google Scholar 

  52. Babu, K.G.; Rao, G.S.: Efficiency of fly ash in concrete with age. Cem. Concr. Res. 26(3), 465–474 (1996). https://doi.org/10.1016/S0008-8846(96)85034-4

    Article  Google Scholar 

  53. Hwang, K.; Noguchi, T.; Tomosawa, F.: Prediction model of compressive strength development of fly-ash concrete. Cem. Concr. Res. 34(12), 2269–2276 (2004). https://doi.org/10.1016/j.cemconres.2004.04.009

    Article  Google Scholar 

  54. Cho, H.B.; Jee, N.Y.; Shin, J.H.: Strength prediction of fly ash concrete using cementing efficiency by statistical analysis. Adv. Mater. Res. 374, 1774–1777 (2012). https://doi.org/10.4028/www.scientific.net/AMR.374-377.1774

    Article  Google Scholar 

  55. Aponte, D.F.; Barra, M.; Vàzquez, E.: Durability and cementing efficiency of fly ash in concretes. Constr. Build. Mater. 1(30), 537–546 (2012). https://doi.org/10.1016/j.conbuildmat.2011.12.026

    Article  Google Scholar 

  56. Bhanja S. Use of efficiency factors in mix proportioning of fly ash concrete. In: Advances in Structural Engineering: Materials, vol. 3, pp. 1761–1771. Springer, India (2015). https://doi.org/10.1007/978-81-322-2187-6_134

  57. Murumi K, Gupta S. Evaluating the efficiency factor of fly ash for predicting compressive strength of fly ash concrete. In: Advances in Structural Engineering: Materials, vol. 3, pp. 1747–1757. Springer, India (2015). https://doi.org/10.1007/978-81-322-2187-6.

  58. Kumar, S.; Rai, B.: Synergetic effect of fly ash and silica fume on the performance of high volume fly ash self-compacting concrete. J. Struct. Integr. Maint. 7(1), 61–74 (2022). https://doi.org/10.1080/24705314.2021.1892571

    Article  Google Scholar 

  59. Meera M, Non-structural concrete utilizing fly ash, marble powder and foam, (2020)

  60. Dash, A.K.; Gupta, S.: Energy absorption behavior of bamboo concrete composite wall panel. J. Build. Eng. 57, 104857 (2022). https://doi.org/10.1016/j.jobe.2022.104857

    Article  Google Scholar 

  61. Supravin K, Water permeability properties of fly ash and marble powder concrete, (2021).

  62. Hashmi, A.F.; Shariq, M.; Baqi, A.: An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction. Constr. Build. Mater. 283, 122772 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122772

    Article  Google Scholar 

  63. Siddique, R.; Aggarwal, P.; Aggarwal, Y.: Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash. Constr. Build. Mater. 1(29), 73–81 (2012). https://doi.org/10.1016/j.conbuildmat.2011.10.035

    Article  Google Scholar 

  64. De Weerdt, K.; Kjellsen, K.O.; Sellevold, E.; Justnes, H.: Synergy between fly ash and limestone powder in ternary cements. Cement Concr. Compos. 33(1), 30–38 (2011). https://doi.org/10.1016/j.cemconcomp.2010.09.006

    Article  Google Scholar 

  65. Duran-Herrera, A.; Juárez, C.A.; Valdez, P.; Bentz, D.P.: Evaluation of sustainable high-volume fly ash concretes. Cement Concr. Compos. 33(1), 39–45 (2011). https://doi.org/10.1016/j.cemconcomp.2010.09.020

    Article  Google Scholar 

  66. Nath, P.; Sarker, P.: Effect of fly ash on the durability properties of high strength concrete. Proc. Eng. 1(14), 1149–1156 (2011). https://doi.org/10.1016/j.proeng.2011.07.144

    Article  Google Scholar 

  67. Yazıcı, H.: The effect of silica fume and high-volume class C fly ash on mechanical properties, chloride penetration and freeze–thaw resistance of self-compacting concrete. Constr. Build. Mater. 22(4), 456–462 (2008). https://doi.org/10.1016/j.conbuildmat.2007.01.002

    Article  Google Scholar 

  68. Jau WC, Fu CW, Yang CT. Study of feasibility and mechanical properties for producing high-flowing concrete with recycled coarse aggregates. In: Proceedings of the International Workshop on Sustainable Development and Concrete Technology, pp. 89–102 (2004)

  69. Siddique, R.: Performance characteristics of high-volume class F fly ash concrete. Cem. Concr. Res. 34(3), 487–493 (2004). https://doi.org/10.1016/j.cemconres.2003.09.002

    Article  Google Scholar 

  70. Poon, C.S.; Azhar, S.; Anson, M.; Wong, Y.L.: Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures. Cem. Concr. Res. 31(9), 1291–1300 (2001). https://doi.org/10.1016/S0008-8846(01)00580-4

    Article  Google Scholar 

  71. Ramezanianpour, A.A.; Malhotra, V.M.: Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. Cement Concr. Compos. 17(2), 125–133 (1995). https://doi.org/10.1016/0958-9465(95)00005-W

    Article  Google Scholar 

  72. Malhotra VM. Superplasticized for structural. Concrete International (1986)

  73. Li, C.; Jiang, L.; Xu, N.; Jiang, S.: Pore structure and permeability of concrete with high volume of limestone powder addition. Powder Technol. 1(338), 416–424 (2018). https://doi.org/10.1016/j.powtec.2018.07.054

    Article  Google Scholar 

  74. Boel, V.; Audenaert, K.; De Schutter, G.: Gas permeability and capillary porosity of self-compacting concrete. Mater. Struct. 41, 1283–1290 (2008). https://doi.org/10.1617/s11527-007-9326-x

    Article  Google Scholar 

  75. Hameed, M.S.; Sekar, A.S.; Saraswathy, V.: Strength and permeability characteristics study of self-compacting concrete using crusher rock dust and marble sludge powder. Arab. J. Sci. Eng. 37, 561–574 (2012). https://doi.org/10.1007/s13369-012-0201-x

    Article  Google Scholar 

  76. Hanafiah, Saloma, Victor, Amalina KN. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA). In: AIP Conference Proceedings, vol. 1903, 1st edn., pp. 050006. AIP Publishing LLC (2017). https://doi.org/10.1063/1.5011545.

  77. Yiğiter, H.; Yazıcı, H.; Aydın, S.: Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete. Build. Environ. 42(4), 1770–1776 (2007). https://doi.org/10.1016/j.buildenv.2006.01.008

    Article  Google Scholar 

  78. Al-Amoudi, O.S.; Al-Kutti, W.A.; Ahmad, S.; Maslehuddin, M.: Correlation between compressive strength and certain durability indices of plain and blended cement concretes. Cement Concr. Compos. 31(9), 672–676 (2009). https://doi.org/10.1016/j.cemconcomp.2009.05.005

    Article  Google Scholar 

  79. Kandil, U.; Erdogdu, S.; Kurbetci, S.: Permeation properties of concretes incorporating fly ash and silica fume. Comput. Concrete. 19(4), 357–363 (2017). https://doi.org/10.12989/cac.2017.19.4.357

    Article  Google Scholar 

  80. Ulubeyli, G.C.; Bilir, T.; Artir, R.: Durability properties of concrete produced by marble waste as aggregate or mineral additives. Proc. Eng. 1(161), 543–548 (2016). https://doi.org/10.1016/j.proeng.2016.08.689

    Article  Google Scholar 

  81. Wang, L.; Guo, F.; Lin, Y.; Yang, H.; Tang, S.W.: Comparison between the effects of phosphorous slag and fly ash on the CSH structure, long-term hydration heat and volume deformation of cement-based materials. Constr. Build. Mater. 250, 118807 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118807

    Article  Google Scholar 

  82. Gupta, T.; Chaudhary, S.; Sharma, R.K.: Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. J. Clean. Prod. 20(112), 702–711 (2016). https://doi.org/10.1016/j.jclepro.2015.07.081

    Article  Google Scholar 

  83. Rana, A.; Kalla, P.; Csetenyi, L.J.: Recycling of dimension limestone industry waste in concrete. Int. J. Min. Reclam. Environ. 31(4), 231–250 (2017). https://doi.org/10.1080/17480930.2016.1138571

    Article  Google Scholar 

  84. Kumar, S.; Gupta, R.C.; Shrivastava, S.: Strength, abrasion and permeability studies on cement concrete containing quartz sandstone coarse aggregates. Constr. Build. Mater. 30(125), 884–891 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.106

    Article  Google Scholar 

  85. Kalla, P.; Rana, A.; Chad, Y.B.; Misra, A.; Csetenyi, L.: Durability studies on concrete containing wollastonite. J. Clean. Prod. 15(87), 726–734 (2015). https://doi.org/10.1016/j.jclepro.2014.10.038

    Article  Google Scholar 

  86. Liu, J.; Qiu, Q.; Xing, F.; Pan, D.: Permeation properties and pore structure of surface layer of fly ash concrete. Materials 7(6), 4282–4296 (2014). https://doi.org/10.3390/ma7064282

    Article  Google Scholar 

  87. Ahmad, S.; Al-Kutti, W.A.; Al-Amoudi, O.S.; Maslehuddin, M.: Correlations between depth of water penetration, chloride permeability, and coefficient of chloride diffusion in plain, silica fume, and fly ash cement concretes. J. Test. Eval. 36(2), 136–139 (2008). https://doi.org/10.1520/jte101074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KMS: Conceptualization, Methodology, Data curation, Writing-Original draft preparation, Visualization, Investigation. MM: Methodology, Data curation, Visualization. SK: Methodology, Data curation, Visualization. SG: Supervision, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Kunal M. Shelote.

Ethics declarations

Conflict of interest

Correlation of Standard and Modified Water Permeability Method for Normal and Low-Strength Concrete with and without Fly ash as Mineral Admixture. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelote, K.M., Meera, M., Supravin, K. et al. Study on Modified Water Permeability Method for Fly Ash Concrete in Comparison with DIN 1048 (Part 5). Arab J Sci Eng 48, 13337–13352 (2023). https://doi.org/10.1007/s13369-023-07831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07831-8

Keywords

Navigation